L(s) = 1 | − 2.56·2-s − 177.·3-s − 505.·4-s − 625·5-s + 454.·6-s + 2.60e3·8-s + 1.18e4·9-s + 1.60e3·10-s + 6.14e4·11-s + 8.97e4·12-s + 1.24e5·13-s + 1.10e5·15-s + 2.52e5·16-s + 3.78e5·17-s − 3.03e4·18-s − 7.23e5·19-s + 3.15e5·20-s − 1.57e5·22-s + 5.50e5·23-s − 4.62e5·24-s + 3.90e5·25-s − 3.17e5·26-s + 1.39e6·27-s − 3.62e6·29-s − 2.84e5·30-s − 9.99e6·31-s − 1.98e6·32-s + ⋯ |
L(s) = 1 | − 0.113·2-s − 1.26·3-s − 0.987·4-s − 0.447·5-s + 0.143·6-s + 0.224·8-s + 0.601·9-s + 0.0506·10-s + 1.26·11-s + 1.24·12-s + 1.20·13-s + 0.565·15-s + 0.961·16-s + 1.10·17-s − 0.0681·18-s − 1.27·19-s + 0.441·20-s − 0.143·22-s + 0.410·23-s − 0.284·24-s + 0.200·25-s − 0.136·26-s + 0.504·27-s − 0.952·29-s − 0.0640·30-s − 1.94·31-s − 0.333·32-s + ⋯ |
Λ(s)=(=(245s/2ΓC(s)L(s)Λ(10−s)
Λ(s)=(=(245s/2ΓC(s+9/2)L(s)Λ(1−s)
Particular Values
L(5) |
≈ |
0.8410530927 |
L(21) |
≈ |
0.8410530927 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+625T |
| 7 | 1 |
good | 2 | 1+2.56T+512T2 |
| 3 | 1+177.T+1.96e4T2 |
| 11 | 1−6.14e4T+2.35e9T2 |
| 13 | 1−1.24e5T+1.06e10T2 |
| 17 | 1−3.78e5T+1.18e11T2 |
| 19 | 1+7.23e5T+3.22e11T2 |
| 23 | 1−5.50e5T+1.80e12T2 |
| 29 | 1+3.62e6T+1.45e13T2 |
| 31 | 1+9.99e6T+2.64e13T2 |
| 37 | 1−4.29e6T+1.29e14T2 |
| 41 | 1−3.15e7T+3.27e14T2 |
| 43 | 1−2.85e7T+5.02e14T2 |
| 47 | 1+2.53e5T+1.11e15T2 |
| 53 | 1+3.77e7T+3.29e15T2 |
| 59 | 1−5.52e6T+8.66e15T2 |
| 61 | 1+1.08e8T+1.16e16T2 |
| 67 | 1−1.05e8T+2.72e16T2 |
| 71 | 1−3.77e8T+4.58e16T2 |
| 73 | 1+3.95e8T+5.88e16T2 |
| 79 | 1+1.08e8T+1.19e17T2 |
| 83 | 1−1.26e8T+1.86e17T2 |
| 89 | 1−2.22e8T+3.50e17T2 |
| 97 | 1+1.34e9T+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.80206041857004819452617616579, −9.434262635526617204999795394434, −8.714290386933416191665124305034, −7.51879056468725155373922639714, −6.22056948025931053820358057285, −5.56370759611844179226084202684, −4.31438927912138700026873868355, −3.63236121623922028486813591962, −1.35336730623670078019319495982, −0.52896795033934380443309579938,
0.52896795033934380443309579938, 1.35336730623670078019319495982, 3.63236121623922028486813591962, 4.31438927912138700026873868355, 5.56370759611844179226084202684, 6.22056948025931053820358057285, 7.51879056468725155373922639714, 8.714290386933416191665124305034, 9.434262635526617204999795394434, 10.80206041857004819452617616579