L(s) = 1 | + (−1.24 + 1.68i)2-s + (−2.33 + 0.441i)3-s + (−0.697 − 2.26i)4-s + (−2.23 − 0.156i)5-s + (2.15 − 4.46i)6-s + (−1.67 + 2.04i)7-s + (0.724 + 0.253i)8-s + (2.44 − 0.961i)9-s + (3.03 − 3.55i)10-s + (0.785 − 2.00i)11-s + (2.62 + 4.96i)12-s + (4.20 + 0.473i)13-s + (−1.35 − 5.36i)14-s + (5.26 − 0.619i)15-s + (2.58 − 1.76i)16-s + (−1.85 − 0.0695i)17-s + ⋯ |
L(s) = 1 | + (−0.877 + 1.18i)2-s + (−1.34 + 0.254i)3-s + (−0.348 − 1.13i)4-s + (−0.997 − 0.0700i)5-s + (0.878 − 1.82i)6-s + (−0.634 + 0.773i)7-s + (0.256 + 0.0896i)8-s + (0.816 − 0.320i)9-s + (0.958 − 1.12i)10-s + (0.236 − 0.603i)11-s + (0.757 + 1.43i)12-s + (1.16 + 0.131i)13-s + (−0.362 − 1.43i)14-s + (1.36 − 0.159i)15-s + (0.646 − 0.440i)16-s + (−0.450 − 0.0168i)17-s + ⋯ |
Λ(s)=(=(245s/2ΓC(s)L(s)(0.988+0.148i)Λ(2−s)
Λ(s)=(=(245s/2ΓC(s+1/2)L(s)(0.988+0.148i)Λ(1−s)
Degree: |
2 |
Conductor: |
245
= 5⋅72
|
Sign: |
0.988+0.148i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ245(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 245, ( :1/2), 0.988+0.148i)
|
Particular Values
L(1) |
≈ |
0.167440−0.0124973i |
L(21) |
≈ |
0.167440−0.0124973i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.23+0.156i)T |
| 7 | 1+(1.67−2.04i)T |
good | 2 | 1+(1.24−1.68i)T+(−0.589−1.91i)T2 |
| 3 | 1+(2.33−0.441i)T+(2.79−1.09i)T2 |
| 11 | 1+(−0.785+2.00i)T+(−8.06−7.48i)T2 |
| 13 | 1+(−4.20−0.473i)T+(12.6+2.89i)T2 |
| 17 | 1+(1.85+0.0695i)T+(16.9+1.27i)T2 |
| 19 | 1+(3.30−5.72i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.262+7.01i)T+(−22.9+1.71i)T2 |
| 29 | 1+(−4.54+1.03i)T+(26.1−12.5i)T2 |
| 31 | 1+(3.46−1.99i)T+(15.5−26.8i)T2 |
| 37 | 1+(0.342−0.180i)T+(20.8−30.5i)T2 |
| 41 | 1+(4.04+8.40i)T+(−25.5+32.0i)T2 |
| 43 | 1+(3.00+8.58i)T+(−33.6+26.8i)T2 |
| 47 | 1+(4.09+3.02i)T+(13.8+44.9i)T2 |
| 53 | 1+(−0.148−0.0786i)T+(29.8+43.7i)T2 |
| 59 | 1+(0.00101+0.0136i)T+(−58.3+8.79i)T2 |
| 61 | 1+(−3.58+11.6i)T+(−50.4−34.3i)T2 |
| 67 | 1+(−4.88−1.30i)T+(58.0+33.5i)T2 |
| 71 | 1+(1.72−7.57i)T+(−63.9−30.8i)T2 |
| 73 | 1+(−5.89+4.35i)T+(21.5−69.7i)T2 |
| 79 | 1+(5.78+3.34i)T+(39.5+68.4i)T2 |
| 83 | 1+(−1.34−11.9i)T+(−80.9+18.4i)T2 |
| 89 | 1+(0.169+0.432i)T+(−65.2+60.5i)T2 |
| 97 | 1+(7.26+7.26i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.01601403354931607980252340861, −10.99012188085329801004095372779, −10.17535894864725728885321347251, −8.633267320177946730715587689513, −8.444086676529992751830558740710, −6.74092184217255592045190334345, −6.28841172517983115895199281692, −5.31985683804018998724881762217, −3.74890257929561437057362229798, −0.26084742556146350141059789766,
1.10117821158153632838409199031, 3.29318054435875218983654955378, 4.52390321764828513882375428011, 6.24761809132415478005788495766, 7.12967709370191621825938582707, 8.406216326411728750112268958091, 9.537610439515665619673990661769, 10.58040981864368628479599123106, 11.24187153653947568658615899360, 11.60286666625971340940824397861