L(s) = 1 | + (−0.0698 + 0.0946i)2-s + (2.41 − 0.456i)3-s + (0.585 + 1.89i)4-s + (−1.81 + 1.29i)5-s + (−0.125 + 0.260i)6-s + (1.69 − 2.03i)7-s + (−0.442 − 0.154i)8-s + (2.82 − 1.10i)9-s + (0.00412 − 0.263i)10-s + (−0.120 + 0.305i)11-s + (2.28 + 4.31i)12-s + (1.21 + 0.137i)13-s + (0.0737 + 0.302i)14-s + (−3.79 + 3.96i)15-s + (−3.23 + 2.20i)16-s + (0.851 + 0.0318i)17-s + ⋯ |
L(s) = 1 | + (−0.0494 + 0.0669i)2-s + (1.39 − 0.263i)3-s + (0.292 + 0.948i)4-s + (−0.813 + 0.581i)5-s + (−0.0512 + 0.106i)6-s + (0.640 − 0.767i)7-s + (−0.156 − 0.0547i)8-s + (0.942 − 0.369i)9-s + (0.00130 − 0.0831i)10-s + (−0.0361 + 0.0922i)11-s + (0.658 + 1.24i)12-s + (0.337 + 0.0380i)13-s + (0.0197 + 0.0808i)14-s + (−0.981 + 1.02i)15-s + (−0.809 + 0.551i)16-s + (0.206 + 0.00773i)17-s + ⋯ |
Λ(s)=(=(245s/2ΓC(s)L(s)(0.865−0.500i)Λ(2−s)
Λ(s)=(=(245s/2ΓC(s+1/2)L(s)(0.865−0.500i)Λ(1−s)
Degree: |
2 |
Conductor: |
245
= 5⋅72
|
Sign: |
0.865−0.500i
|
Analytic conductor: |
1.95633 |
Root analytic conductor: |
1.39869 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ245(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 245, ( :1/2), 0.865−0.500i)
|
Particular Values
L(1) |
≈ |
1.71676+0.460264i |
L(21) |
≈ |
1.71676+0.460264i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(1.81−1.29i)T |
| 7 | 1+(−1.69+2.03i)T |
good | 2 | 1+(0.0698−0.0946i)T+(−0.589−1.91i)T2 |
| 3 | 1+(−2.41+0.456i)T+(2.79−1.09i)T2 |
| 11 | 1+(0.120−0.305i)T+(−8.06−7.48i)T2 |
| 13 | 1+(−1.21−0.137i)T+(12.6+2.89i)T2 |
| 17 | 1+(−0.851−0.0318i)T+(16.9+1.27i)T2 |
| 19 | 1+(1.69−2.92i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.287+7.67i)T+(−22.9+1.71i)T2 |
| 29 | 1+(8.41−1.92i)T+(26.1−12.5i)T2 |
| 31 | 1+(−8.13+4.69i)T+(15.5−26.8i)T2 |
| 37 | 1+(2.69−1.42i)T+(20.8−30.5i)T2 |
| 41 | 1+(3.82+7.93i)T+(−25.5+32.0i)T2 |
| 43 | 1+(−0.640−1.83i)T+(−33.6+26.8i)T2 |
| 47 | 1+(−3.54−2.61i)T+(13.8+44.9i)T2 |
| 53 | 1+(4.73+2.50i)T+(29.8+43.7i)T2 |
| 59 | 1+(−0.633−8.45i)T+(−58.3+8.79i)T2 |
| 61 | 1+(−2.31+7.48i)T+(−50.4−34.3i)T2 |
| 67 | 1+(−1.73−0.465i)T+(58.0+33.5i)T2 |
| 71 | 1+(−0.413+1.81i)T+(−63.9−30.8i)T2 |
| 73 | 1+(4.30−3.17i)T+(21.5−69.7i)T2 |
| 79 | 1+(6.73+3.88i)T+(39.5+68.4i)T2 |
| 83 | 1+(−1.40−12.4i)T+(−80.9+18.4i)T2 |
| 89 | 1+(0.319+0.813i)T+(−65.2+60.5i)T2 |
| 97 | 1+(−10.5−10.5i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.24994780042960179104167961404, −11.26368816842480631389669857685, −10.33531437068492537242624156246, −8.802414582210781271080934441933, −8.081513317484871648015406053586, −7.58319285641354755555142305022, −6.65320384260970198183746513968, −4.23388391847058664889562716552, −3.50272208948586900676121401810, −2.29519143837248401237419283648,
1.73576942873223434955064920236, 3.18680763071696161993581195002, 4.58876908895335317122637210429, 5.69825606746902540400699513711, 7.35361044064832615348136117732, 8.347460931225057682157438508021, 9.001351574925219031162145328839, 9.820137370590556414725231262937, 11.17413262940080206726006120697, 11.79597095819413741591049647729