Properties

Label 2-2496-1.1-c1-0-15
Degree $2$
Conductor $2496$
Sign $1$
Analytic cond. $19.9306$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s + 9-s − 4·11-s − 13-s + 2·15-s − 6·17-s + 8·19-s + 8·23-s − 25-s + 27-s − 2·29-s + 8·31-s − 4·33-s + 10·37-s − 39-s + 6·41-s + 4·43-s + 2·45-s − 7·49-s − 6·51-s + 14·53-s − 8·55-s + 8·57-s + 12·59-s + 10·61-s − 2·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s + 1/3·9-s − 1.20·11-s − 0.277·13-s + 0.516·15-s − 1.45·17-s + 1.83·19-s + 1.66·23-s − 1/5·25-s + 0.192·27-s − 0.371·29-s + 1.43·31-s − 0.696·33-s + 1.64·37-s − 0.160·39-s + 0.937·41-s + 0.609·43-s + 0.298·45-s − 49-s − 0.840·51-s + 1.92·53-s − 1.07·55-s + 1.05·57-s + 1.56·59-s + 1.28·61-s − 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(19.9306\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.589358492\)
\(L(\frac12)\) \(\approx\) \(2.589358492\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.010117339441672649891089311783, −8.188343340471922629127800088481, −7.40276848314548708606283973789, −6.74853773234864204625876687463, −5.66566431334626487972062313252, −5.09212707298900716958728690515, −4.13812945030733959698956920979, −2.73905592142337669314256041545, −2.49862473157215028411984325777, −1.03001095842298099455230969034, 1.03001095842298099455230969034, 2.49862473157215028411984325777, 2.73905592142337669314256041545, 4.13812945030733959698956920979, 5.09212707298900716958728690515, 5.66566431334626487972062313252, 6.74853773234864204625876687463, 7.40276848314548708606283973789, 8.188343340471922629127800088481, 9.010117339441672649891089311783

Graph of the $Z$-function along the critical line