L(s) = 1 | − 3-s − 2·7-s + 9-s + 4·11-s − 13-s − 6·17-s + 6·19-s + 2·21-s − 5·25-s − 27-s + 2·29-s + 6·31-s − 4·33-s − 10·37-s + 39-s + 8·41-s + 12·43-s − 12·47-s − 3·49-s + 6·51-s + 6·53-s − 6·57-s − 2·61-s − 2·63-s + 2·67-s + 8·71-s + 14·73-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.755·7-s + 1/3·9-s + 1.20·11-s − 0.277·13-s − 1.45·17-s + 1.37·19-s + 0.436·21-s − 25-s − 0.192·27-s + 0.371·29-s + 1.07·31-s − 0.696·33-s − 1.64·37-s + 0.160·39-s + 1.24·41-s + 1.82·43-s − 1.75·47-s − 3/7·49-s + 0.840·51-s + 0.824·53-s − 0.794·57-s − 0.256·61-s − 0.251·63-s + 0.244·67-s + 0.949·71-s + 1.63·73-s + ⋯ |
Λ(s)=(=(2496s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2496s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.268600395 |
L(21) |
≈ |
1.268600395 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 13 | 1+T |
good | 5 | 1+pT2 |
| 7 | 1+2T+pT2 |
| 11 | 1−4T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−6T+pT2 |
| 23 | 1+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1−6T+pT2 |
| 37 | 1+10T+pT2 |
| 41 | 1−8T+pT2 |
| 43 | 1−12T+pT2 |
| 47 | 1+12T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−2T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1−8T+pT2 |
| 89 | 1−4T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.220283570203917667028022793155, −8.137716429689322885874117903176, −7.16333848096912753102386607562, −6.57091938769509480942354725697, −5.98247083912518480972422452649, −4.97254580700680097900229302596, −4.13958008081477749813044275306, −3.29289095796707662296197413885, −2.06399639050261723146787386632, −0.73510269161810698907992625597,
0.73510269161810698907992625597, 2.06399639050261723146787386632, 3.29289095796707662296197413885, 4.13958008081477749813044275306, 4.97254580700680097900229302596, 5.98247083912518480972422452649, 6.57091938769509480942354725697, 7.16333848096912753102386607562, 8.137716429689322885874117903176, 9.220283570203917667028022793155