Properties

Label 2-2496-1.1-c3-0-111
Degree $2$
Conductor $2496$
Sign $-1$
Analytic cond. $147.268$
Root an. cond. $12.1354$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 4·5-s − 4·7-s + 9·9-s + 2·11-s + 13·13-s − 12·15-s − 6·17-s − 36·19-s − 12·21-s + 20·23-s − 109·25-s + 27·27-s + 14·29-s + 152·31-s + 6·33-s + 16·35-s + 258·37-s + 39·39-s + 84·41-s − 188·43-s − 36·45-s − 254·47-s − 327·49-s − 18·51-s − 366·53-s − 8·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.357·5-s − 0.215·7-s + 1/3·9-s + 0.0548·11-s + 0.277·13-s − 0.206·15-s − 0.0856·17-s − 0.434·19-s − 0.124·21-s + 0.181·23-s − 0.871·25-s + 0.192·27-s + 0.0896·29-s + 0.880·31-s + 0.0316·33-s + 0.0772·35-s + 1.14·37-s + 0.160·39-s + 0.319·41-s − 0.666·43-s − 0.119·45-s − 0.788·47-s − 0.953·49-s − 0.0494·51-s − 0.948·53-s − 0.0196·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(147.268\)
Root analytic conductor: \(12.1354\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2496,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
13 \( 1 - p T \)
good5 \( 1 + 4 T + p^{3} T^{2} \)
7 \( 1 + 4 T + p^{3} T^{2} \)
11 \( 1 - 2 T + p^{3} T^{2} \)
17 \( 1 + 6 T + p^{3} T^{2} \)
19 \( 1 + 36 T + p^{3} T^{2} \)
23 \( 1 - 20 T + p^{3} T^{2} \)
29 \( 1 - 14 T + p^{3} T^{2} \)
31 \( 1 - 152 T + p^{3} T^{2} \)
37 \( 1 - 258 T + p^{3} T^{2} \)
41 \( 1 - 84 T + p^{3} T^{2} \)
43 \( 1 + 188 T + p^{3} T^{2} \)
47 \( 1 + 254 T + p^{3} T^{2} \)
53 \( 1 + 366 T + p^{3} T^{2} \)
59 \( 1 - 550 T + p^{3} T^{2} \)
61 \( 1 - 14 T + p^{3} T^{2} \)
67 \( 1 - 448 T + p^{3} T^{2} \)
71 \( 1 + 926 T + p^{3} T^{2} \)
73 \( 1 - 254 T + p^{3} T^{2} \)
79 \( 1 + 1328 T + p^{3} T^{2} \)
83 \( 1 - 186 T + p^{3} T^{2} \)
89 \( 1 + 336 T + p^{3} T^{2} \)
97 \( 1 - 614 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.199007141859573397779797155115, −7.58885355056681573196717188067, −6.65990914435576323876706701076, −6.01069391225621990630018905738, −4.85877890101840951485711166306, −4.09208728516349750294318093559, −3.27927482062737414944372447471, −2.38445835137681607404900500521, −1.27838234338954444173473271919, 0, 1.27838234338954444173473271919, 2.38445835137681607404900500521, 3.27927482062737414944372447471, 4.09208728516349750294318093559, 4.85877890101840951485711166306, 6.01069391225621990630018905738, 6.65990914435576323876706701076, 7.58885355056681573196717188067, 8.199007141859573397779797155115

Graph of the $Z$-function along the critical line