Properties

Label 2-2496-1.1-c3-0-118
Degree $2$
Conductor $2496$
Sign $-1$
Analytic cond. $147.268$
Root an. cond. $12.1354$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 6·5-s + 20·7-s + 9·9-s − 24·11-s − 13·13-s − 18·15-s − 30·17-s + 16·19-s + 60·21-s − 72·23-s − 89·25-s + 27·27-s + 282·29-s + 164·31-s − 72·33-s − 120·35-s − 110·37-s − 39·39-s − 126·41-s − 164·43-s − 54·45-s − 204·47-s + 57·49-s − 90·51-s + 738·53-s + 144·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.536·5-s + 1.07·7-s + 1/3·9-s − 0.657·11-s − 0.277·13-s − 0.309·15-s − 0.428·17-s + 0.193·19-s + 0.623·21-s − 0.652·23-s − 0.711·25-s + 0.192·27-s + 1.80·29-s + 0.950·31-s − 0.379·33-s − 0.579·35-s − 0.488·37-s − 0.160·39-s − 0.479·41-s − 0.581·43-s − 0.178·45-s − 0.633·47-s + 0.166·49-s − 0.247·51-s + 1.91·53-s + 0.353·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $-1$
Analytic conductor: \(147.268\)
Root analytic conductor: \(12.1354\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2496,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
13 \( 1 + p T \)
good5 \( 1 + 6 T + p^{3} T^{2} \)
7 \( 1 - 20 T + p^{3} T^{2} \)
11 \( 1 + 24 T + p^{3} T^{2} \)
17 \( 1 + 30 T + p^{3} T^{2} \)
19 \( 1 - 16 T + p^{3} T^{2} \)
23 \( 1 + 72 T + p^{3} T^{2} \)
29 \( 1 - 282 T + p^{3} T^{2} \)
31 \( 1 - 164 T + p^{3} T^{2} \)
37 \( 1 + 110 T + p^{3} T^{2} \)
41 \( 1 + 126 T + p^{3} T^{2} \)
43 \( 1 + 164 T + p^{3} T^{2} \)
47 \( 1 + 204 T + p^{3} T^{2} \)
53 \( 1 - 738 T + p^{3} T^{2} \)
59 \( 1 + 120 T + p^{3} T^{2} \)
61 \( 1 + 614 T + p^{3} T^{2} \)
67 \( 1 + 848 T + p^{3} T^{2} \)
71 \( 1 - 132 T + p^{3} T^{2} \)
73 \( 1 - 218 T + p^{3} T^{2} \)
79 \( 1 + 1096 T + p^{3} T^{2} \)
83 \( 1 + 552 T + p^{3} T^{2} \)
89 \( 1 - 210 T + p^{3} T^{2} \)
97 \( 1 + 1726 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.332000882195298676902530724457, −7.60183396981261854466321704808, −6.86963171070988769960099753345, −5.79212091346365461341625292036, −4.77004707883429040554838275059, −4.33308202003223622669385089414, −3.19130007233440145044251208007, −2.32823925710184006128101027239, −1.34199051385831543847779805331, 0, 1.34199051385831543847779805331, 2.32823925710184006128101027239, 3.19130007233440145044251208007, 4.33308202003223622669385089414, 4.77004707883429040554838275059, 5.79212091346365461341625292036, 6.86963171070988769960099753345, 7.60183396981261854466321704808, 8.332000882195298676902530724457

Graph of the $Z$-function along the critical line