L(s) = 1 | − 3·3-s − 10·5-s − 8·7-s + 9·9-s − 40·11-s − 13·13-s + 30·15-s + 130·17-s + 20·19-s + 24·21-s − 25·25-s − 27·27-s + 18·29-s − 184·31-s + 120·33-s + 80·35-s + 74·37-s + 39·39-s − 362·41-s − 76·43-s − 90·45-s − 452·47-s − 279·49-s − 390·51-s − 382·53-s + 400·55-s − 60·57-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.894·5-s − 0.431·7-s + 1/3·9-s − 1.09·11-s − 0.277·13-s + 0.516·15-s + 1.85·17-s + 0.241·19-s + 0.249·21-s − 1/5·25-s − 0.192·27-s + 0.115·29-s − 1.06·31-s + 0.633·33-s + 0.386·35-s + 0.328·37-s + 0.160·39-s − 1.37·41-s − 0.269·43-s − 0.298·45-s − 1.40·47-s − 0.813·49-s − 1.07·51-s − 0.990·53-s + 0.980·55-s − 0.139·57-s + ⋯ |
Λ(s)=(=(2496s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2496s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.5369921535 |
L(21) |
≈ |
0.5369921535 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+pT |
| 13 | 1+pT |
good | 5 | 1+2pT+p3T2 |
| 7 | 1+8T+p3T2 |
| 11 | 1+40T+p3T2 |
| 17 | 1−130T+p3T2 |
| 19 | 1−20T+p3T2 |
| 23 | 1+p3T2 |
| 29 | 1−18T+p3T2 |
| 31 | 1+184T+p3T2 |
| 37 | 1−2pT+p3T2 |
| 41 | 1+362T+p3T2 |
| 43 | 1+76T+p3T2 |
| 47 | 1+452T+p3T2 |
| 53 | 1+382T+p3T2 |
| 59 | 1+464T+p3T2 |
| 61 | 1+358T+p3T2 |
| 67 | 1−700T+p3T2 |
| 71 | 1+748T+p3T2 |
| 73 | 1−1058T+p3T2 |
| 79 | 1+976T+p3T2 |
| 83 | 1−1008T+p3T2 |
| 89 | 1+386T+p3T2 |
| 97 | 1+614T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.277128111182670127197665698516, −7.79470786174600877214805138615, −7.17912818826609614255064823452, −6.20215113234700980468648256545, −5.36678659725402263954052212756, −4.78544687286091458554004896539, −3.59468348153758132672877801260, −3.06410583350988850963273638139, −1.60893225071301858449973478687, −0.33245213530920080717427301061,
0.33245213530920080717427301061, 1.60893225071301858449973478687, 3.06410583350988850963273638139, 3.59468348153758132672877801260, 4.78544687286091458554004896539, 5.36678659725402263954052212756, 6.20215113234700980468648256545, 7.17912818826609614255064823452, 7.79470786174600877214805138615, 8.277128111182670127197665698516