Properties

Label 2-2496-1.1-c3-0-8
Degree $2$
Conductor $2496$
Sign $1$
Analytic cond. $147.268$
Root an. cond. $12.1354$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 10·5-s − 8·7-s + 9·9-s − 40·11-s − 13·13-s + 30·15-s + 130·17-s + 20·19-s + 24·21-s − 25·25-s − 27·27-s + 18·29-s − 184·31-s + 120·33-s + 80·35-s + 74·37-s + 39·39-s − 362·41-s − 76·43-s − 90·45-s − 452·47-s − 279·49-s − 390·51-s − 382·53-s + 400·55-s − 60·57-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 0.431·7-s + 1/3·9-s − 1.09·11-s − 0.277·13-s + 0.516·15-s + 1.85·17-s + 0.241·19-s + 0.249·21-s − 1/5·25-s − 0.192·27-s + 0.115·29-s − 1.06·31-s + 0.633·33-s + 0.386·35-s + 0.328·37-s + 0.160·39-s − 1.37·41-s − 0.269·43-s − 0.298·45-s − 1.40·47-s − 0.813·49-s − 1.07·51-s − 0.990·53-s + 0.980·55-s − 0.139·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(147.268\)
Root analytic conductor: \(12.1354\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5369921535\)
\(L(\frac12)\) \(\approx\) \(0.5369921535\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
13 \( 1 + p T \)
good5 \( 1 + 2 p T + p^{3} T^{2} \)
7 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 + 40 T + p^{3} T^{2} \)
17 \( 1 - 130 T + p^{3} T^{2} \)
19 \( 1 - 20 T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 - 18 T + p^{3} T^{2} \)
31 \( 1 + 184 T + p^{3} T^{2} \)
37 \( 1 - 2 p T + p^{3} T^{2} \)
41 \( 1 + 362 T + p^{3} T^{2} \)
43 \( 1 + 76 T + p^{3} T^{2} \)
47 \( 1 + 452 T + p^{3} T^{2} \)
53 \( 1 + 382 T + p^{3} T^{2} \)
59 \( 1 + 464 T + p^{3} T^{2} \)
61 \( 1 + 358 T + p^{3} T^{2} \)
67 \( 1 - 700 T + p^{3} T^{2} \)
71 \( 1 + 748 T + p^{3} T^{2} \)
73 \( 1 - 1058 T + p^{3} T^{2} \)
79 \( 1 + 976 T + p^{3} T^{2} \)
83 \( 1 - 1008 T + p^{3} T^{2} \)
89 \( 1 + 386 T + p^{3} T^{2} \)
97 \( 1 + 614 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.277128111182670127197665698516, −7.79470786174600877214805138615, −7.17912818826609614255064823452, −6.20215113234700980468648256545, −5.36678659725402263954052212756, −4.78544687286091458554004896539, −3.59468348153758132672877801260, −3.06410583350988850963273638139, −1.60893225071301858449973478687, −0.33245213530920080717427301061, 0.33245213530920080717427301061, 1.60893225071301858449973478687, 3.06410583350988850963273638139, 3.59468348153758132672877801260, 4.78544687286091458554004896539, 5.36678659725402263954052212756, 6.20215113234700980468648256545, 7.17912818826609614255064823452, 7.79470786174600877214805138615, 8.277128111182670127197665698516

Graph of the $Z$-function along the critical line