L(s) = 1 | + (0.773 − 0.634i)2-s + (−0.980 + 0.195i)3-s + (0.195 − 0.980i)4-s + (−0.704 − 1.05i)5-s + (−0.634 + 0.773i)6-s + (−0.471 − 0.881i)8-s + (0.923 − 0.382i)9-s + (−1.21 − 0.368i)10-s + (0.344 − 1.72i)11-s + i·12-s + (−0.555 + 0.831i)13-s + (0.897 + 0.897i)15-s + (−0.923 − 0.382i)16-s + (0.471 − 0.881i)18-s + (−1.17 + 0.485i)20-s + ⋯ |
L(s) = 1 | + (0.773 − 0.634i)2-s + (−0.980 + 0.195i)3-s + (0.195 − 0.980i)4-s + (−0.704 − 1.05i)5-s + (−0.634 + 0.773i)6-s + (−0.471 − 0.881i)8-s + (0.923 − 0.382i)9-s + (−1.21 − 0.368i)10-s + (0.344 − 1.72i)11-s + i·12-s + (−0.555 + 0.831i)13-s + (0.897 + 0.897i)15-s + (−0.923 − 0.382i)16-s + (0.471 − 0.881i)18-s + (−1.17 + 0.485i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8764614477\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8764614477\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.773 + 0.634i)T \) |
| 3 | \( 1 + (0.980 - 0.195i)T \) |
| 13 | \( 1 + (0.555 - 0.831i)T \) |
good | 5 | \( 1 + (0.704 + 1.05i)T + (-0.382 + 0.923i)T^{2} \) |
| 7 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.344 + 1.72i)T + (-0.923 - 0.382i)T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 23 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 29 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 41 | \( 1 + (-0.0750 - 0.181i)T + (-0.707 + 0.707i)T^{2} \) |
| 43 | \( 1 + (1.63 + 0.324i)T + (0.923 + 0.382i)T^{2} \) |
| 47 | \( 1 + (0.410 - 0.410i)T - iT^{2} \) |
| 53 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 59 | \( 1 + (0.858 + 1.28i)T + (-0.382 + 0.923i)T^{2} \) |
| 61 | \( 1 + (-0.750 + 0.149i)T + (0.923 - 0.382i)T^{2} \) |
| 67 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 71 | \( 1 + (0.871 + 0.360i)T + (0.707 + 0.707i)T^{2} \) |
| 73 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 79 | \( 1 + (1.17 + 1.17i)T + iT^{2} \) |
| 83 | \( 1 + (-1.65 - 1.10i)T + (0.382 + 0.923i)T^{2} \) |
| 89 | \( 1 + (-0.222 + 0.536i)T + (-0.707 - 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.940768858200949626640364485106, −8.003442304909304507048887831736, −6.83151710693256538646146386190, −6.16717186771984254828651018204, −5.36473491779769090361038515630, −4.70463486155057457838906070728, −4.04192167493338227821495543669, −3.21911976996015960379657072526, −1.59289662263309545600580239203, −0.51198847737137961292475501440,
2.04845206596814234698292923110, 3.16265183741172885092032932846, 4.15586515292277887890818742525, 4.81701614397770816783183653803, 5.61576608619020510552449380306, 6.56303859640052445368569984241, 7.18496427303500522180888462524, 7.40650251397706195308296277117, 8.345769889847921167411866554268, 9.701462937439132119054116844371