L(s) = 1 | + (0.956 − 0.290i)2-s + (−0.555 + 0.831i)3-s + (0.831 − 0.555i)4-s + (−0.113 + 0.569i)5-s + (−0.290 + 0.956i)6-s + (0.634 − 0.773i)8-s + (−0.382 − 0.923i)9-s + (0.0569 + 0.577i)10-s + (1.28 − 0.858i)11-s + i·12-s + (−0.195 − 0.980i)13-s + (−0.410 − 0.410i)15-s + (0.382 − 0.923i)16-s + (−0.634 − 0.773i)18-s + (0.222 + 0.536i)20-s + ⋯ |
L(s) = 1 | + (0.956 − 0.290i)2-s + (−0.555 + 0.831i)3-s + (0.831 − 0.555i)4-s + (−0.113 + 0.569i)5-s + (−0.290 + 0.956i)6-s + (0.634 − 0.773i)8-s + (−0.382 − 0.923i)9-s + (0.0569 + 0.577i)10-s + (1.28 − 0.858i)11-s + i·12-s + (−0.195 − 0.980i)13-s + (−0.410 − 0.410i)15-s + (0.382 − 0.923i)16-s + (−0.634 − 0.773i)18-s + (0.222 + 0.536i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.919620364\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.919620364\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.956 + 0.290i)T \) |
| 3 | \( 1 + (0.555 - 0.831i)T \) |
| 13 | \( 1 + (0.195 + 0.980i)T \) |
good | 5 | \( 1 + (0.113 - 0.569i)T + (-0.923 - 0.382i)T^{2} \) |
| 7 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-1.28 + 0.858i)T + (0.382 - 0.923i)T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 41 | \( 1 + (0.871 - 0.360i)T + (0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (-1.08 - 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
| 47 | \( 1 + (1.40 - 1.40i)T - iT^{2} \) |
| 53 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 59 | \( 1 + (0.373 - 1.87i)T + (-0.923 - 0.382i)T^{2} \) |
| 61 | \( 1 + (-1.02 + 1.53i)T + (-0.382 - 0.923i)T^{2} \) |
| 67 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 71 | \( 1 + (0.485 - 1.17i)T + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (1.38 + 1.38i)T + iT^{2} \) |
| 83 | \( 1 + (-1.72 + 0.344i)T + (0.923 - 0.382i)T^{2} \) |
| 89 | \( 1 + (1.83 + 0.761i)T + (0.707 + 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.376613704356095846643213529487, −8.384025824187219862769457505843, −7.27150318684304744564746606757, −6.37158695925103548607577931223, −6.00622199586767306113610951881, −5.05878274745413284934498693187, −4.31079948016353595551429766036, −3.36800674126181484505681771003, −2.96512919334527110449061882688, −1.19025519598771751878518753415,
1.48191395448397869626170407210, 2.24900566509235436718281643901, 3.68738686575504630726234828732, 4.54450879919775018856081652791, 5.12715591075459257822732384763, 6.08977213893866322426153280822, 6.92244128626406031267153310025, 7.06246830390961156696523773204, 8.212050330124887109295082252886, 8.868791141950290252630293775839