L(s) = 1 | + (−0.290 − 0.956i)2-s + (0.555 − 0.831i)3-s + (−0.831 + 0.555i)4-s + (0.373 − 1.87i)5-s + (−0.956 − 0.290i)6-s + (0.773 + 0.634i)8-s + (−0.382 − 0.923i)9-s + (−1.90 + 0.187i)10-s + (1.05 − 0.704i)11-s + i·12-s + (0.195 + 0.980i)13-s + (−1.35 − 1.35i)15-s + (0.382 − 0.923i)16-s + (−0.773 + 0.634i)18-s + (0.732 + 1.76i)20-s + ⋯ |
L(s) = 1 | + (−0.290 − 0.956i)2-s + (0.555 − 0.831i)3-s + (−0.831 + 0.555i)4-s + (0.373 − 1.87i)5-s + (−0.956 − 0.290i)6-s + (0.773 + 0.634i)8-s + (−0.382 − 0.923i)9-s + (−1.90 + 0.187i)10-s + (1.05 − 0.704i)11-s + i·12-s + (0.195 + 0.980i)13-s + (−1.35 − 1.35i)15-s + (0.382 − 0.923i)16-s + (−0.773 + 0.634i)18-s + (0.732 + 1.76i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.282537470\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.282537470\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.290 + 0.956i)T \) |
| 3 | \( 1 + (-0.555 + 0.831i)T \) |
| 13 | \( 1 + (-0.195 - 0.980i)T \) |
good | 5 | \( 1 + (-0.373 + 1.87i)T + (-0.923 - 0.382i)T^{2} \) |
| 7 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 11 | \( 1 + (-1.05 + 0.704i)T + (0.382 - 0.923i)T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 29 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 41 | \( 1 + (-1.62 + 0.674i)T + (0.707 - 0.707i)T^{2} \) |
| 43 | \( 1 + (-1.08 - 1.63i)T + (-0.382 + 0.923i)T^{2} \) |
| 47 | \( 1 + (0.138 - 0.138i)T - iT^{2} \) |
| 53 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 59 | \( 1 + (0.113 - 0.569i)T + (-0.923 - 0.382i)T^{2} \) |
| 61 | \( 1 + (1.02 - 1.53i)T + (-0.382 - 0.923i)T^{2} \) |
| 67 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 71 | \( 1 + (0.591 - 1.42i)T + (-0.707 - 0.707i)T^{2} \) |
| 73 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 79 | \( 1 + (-1.38 - 1.38i)T + iT^{2} \) |
| 83 | \( 1 + (0.924 - 0.183i)T + (0.923 - 0.382i)T^{2} \) |
| 89 | \( 1 + (0.181 + 0.0750i)T + (0.707 + 0.707i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.996909627475874616165118968728, −8.288316472682817700496503328875, −7.53942917173911089137535278385, −6.33068794201133401298502948604, −5.55137021090149229014805543999, −4.36999677516594779823720613158, −3.91769415583134252754124001802, −2.58700866387824112261683939789, −1.51751640919983830987225901512, −1.00354342356160520564766820760,
2.00119381698266075162230870283, 3.14626119265158391171429642869, 3.84899145667485785430969798673, 4.81221885248677512845428936877, 5.93477370370968085207523839823, 6.36057305124185725868185828062, 7.42140251338559202801986415564, 7.67966879020268689961152383940, 8.815229868220901242807570782489, 9.561180503479644930843621093716