L(s) = 1 | + (−0.5 − 0.866i)3-s + (−1.86 + 0.5i)7-s + (−0.499 + 0.866i)9-s + (0.866 + 0.5i)13-s + (1.36 − 0.366i)19-s + (1.36 + 1.36i)21-s − i·25-s + 0.999·27-s + (0.366 − 0.366i)31-s + (0.366 − 1.36i)37-s − 0.999i·39-s + (0.866 + 0.5i)43-s + (2.36 − 1.36i)49-s + (−1 − 0.999i)57-s + (0.866 + 0.5i)61-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)3-s + (−1.86 + 0.5i)7-s + (−0.499 + 0.866i)9-s + (0.866 + 0.5i)13-s + (1.36 − 0.366i)19-s + (1.36 + 1.36i)21-s − i·25-s + 0.999·27-s + (0.366 − 0.366i)31-s + (0.366 − 1.36i)37-s − 0.999i·39-s + (0.866 + 0.5i)43-s + (2.36 − 1.36i)49-s + (−1 − 0.999i)57-s + (0.866 + 0.5i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.733 + 0.679i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.733 + 0.679i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8013775784\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8013775784\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.866 - 0.5i)T \) |
good | 5 | \( 1 + iT^{2} \) |
| 7 | \( 1 + (1.86 - 0.5i)T + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 37 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 1.86i)T + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 + (1.36 - 1.36i)T - iT^{2} \) |
| 79 | \( 1 - 1.73iT - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (0.5 - 0.133i)T + (0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.094480622767696593072879644616, −8.215860757974731141746168197296, −7.25960018554235475523643701401, −6.64873087947465132330104240055, −6.02179963708753159197057538521, −5.47567483502994902869027638851, −4.13553890013918983109963986241, −3.10740644012042756982932313421, −2.32578131289698046109945833271, −0.796091737994580609564721380774,
0.927182689337368569622974117805, 3.12413015353144234682857047330, 3.36491607317856018552632056527, 4.30430535345994512769822997956, 5.44874061710543987517729284758, 6.01436652217665322518220638409, 6.73694486964280175117597987817, 7.53813988414025027882466997875, 8.715114885569306665914973715594, 9.361820811914701854981865070927