L(s) = 1 | + (0.5 − 0.866i)3-s + (0.133 − 0.5i)7-s + (−0.499 − 0.866i)9-s + (−0.866 + 0.5i)13-s + (0.366 − 1.36i)19-s + (−0.366 − 0.366i)21-s − i·25-s − 0.999·27-s + (1.36 − 1.36i)31-s + (−1.36 + 0.366i)37-s + 0.999i·39-s + (0.866 − 0.5i)43-s + (0.633 + 0.366i)49-s + (−0.999 − i)57-s + (−0.866 + 0.5i)61-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)3-s + (0.133 − 0.5i)7-s + (−0.499 − 0.866i)9-s + (−0.866 + 0.5i)13-s + (0.366 − 1.36i)19-s + (−0.366 − 0.366i)21-s − i·25-s − 0.999·27-s + (1.36 − 1.36i)31-s + (−1.36 + 0.366i)37-s + 0.999i·39-s + (0.866 − 0.5i)43-s + (0.633 + 0.366i)49-s + (−0.999 − i)57-s + (−0.866 + 0.5i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.233 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.233 + 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.287244608\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.287244608\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.866 - 0.5i)T \) |
good | 5 | \( 1 + iT^{2} \) |
| 7 | \( 1 + (-0.133 + 0.5i)T + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 37 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 41 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.133i)T + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 + (-0.366 + 0.366i)T - iT^{2} \) |
| 79 | \( 1 - 1.73iT - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (0.5 - 1.86i)T + (-0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.828114123858920054868142065778, −8.032652344164921161942164488748, −7.31246798381799790775470463195, −6.80970520504917519731923375155, −5.97983267166276215685742683831, −4.84633484350411841906878057583, −4.06767484707079852693662532683, −2.85900411752761296474430016003, −2.18236534610030329694531345954, −0.804647898068817346502806250613,
1.77484794444131334455209268037, 2.89403190274989759179588307267, 3.54871748142952499290944302511, 4.65010498193238132387826834744, 5.28627355015494738689279689123, 6.01270788494567949783661299101, 7.25982427768462984186911939304, 7.906326279459783654165073306257, 8.680191453647401546587958871600, 9.260710298729083020265766884949