L(s) = 1 | − 3-s + 9-s + 13-s − 25-s − 27-s − 39-s + 2·43-s + 49-s + 2·61-s + 75-s + 2·79-s + 81-s − 2·103-s + 117-s + ⋯ |
L(s) = 1 | − 3-s + 9-s + 13-s − 25-s − 27-s − 39-s + 2·43-s + 49-s + 2·61-s + 75-s + 2·79-s + 81-s − 2·103-s + 117-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9066910356\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9066910356\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 13 | \( 1 - T \) |
good | 5 | \( 1 + T^{2} \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( 1 + T^{2} \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( ( 1 - T )^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( ( 1 - T )^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.220703985348687024835575760411, −8.282158654389640906495241771473, −7.48285790828679069135982857251, −6.68795395973771317664138866965, −5.92922750536923791224234033848, −5.39130907775536442430147302103, −4.30763893815973840512504000220, −3.67419019211473414565029050569, −2.22027027167738786278901006374, −0.979215445602694142476161031703,
0.979215445602694142476161031703, 2.22027027167738786278901006374, 3.67419019211473414565029050569, 4.30763893815973840512504000220, 5.39130907775536442430147302103, 5.92922750536923791224234033848, 6.68795395973771317664138866965, 7.48285790828679069135982857251, 8.282158654389640906495241771473, 9.220703985348687024835575760411