L(s) = 1 | − 3-s + 9-s + 13-s − 25-s − 27-s − 39-s + 2·43-s + 49-s + 2·61-s + 75-s + 2·79-s + 81-s − 2·103-s + 117-s + ⋯ |
L(s) = 1 | − 3-s + 9-s + 13-s − 25-s − 27-s − 39-s + 2·43-s + 49-s + 2·61-s + 75-s + 2·79-s + 81-s − 2·103-s + 117-s + ⋯ |
Λ(s)=(=(2496s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(2496s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
2496
= 26⋅3⋅13
|
Sign: |
1
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ2496(1793,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 2496, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.9066910356 |
L(21) |
≈ |
0.9066910356 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 13 | 1−T |
good | 5 | 1+T2 |
| 7 | (1−T)(1+T) |
| 11 | 1+T2 |
| 17 | (1−T)(1+T) |
| 19 | (1−T)(1+T) |
| 23 | (1−T)(1+T) |
| 29 | (1−T)(1+T) |
| 31 | (1−T)(1+T) |
| 37 | (1−T)(1+T) |
| 41 | 1+T2 |
| 43 | (1−T)2 |
| 47 | 1+T2 |
| 53 | (1−T)(1+T) |
| 59 | 1+T2 |
| 61 | (1−T)2 |
| 67 | (1−T)(1+T) |
| 71 | 1+T2 |
| 73 | (1−T)(1+T) |
| 79 | (1−T)2 |
| 83 | 1+T2 |
| 89 | 1+T2 |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.220703985348687024835575760411, −8.282158654389640906495241771473, −7.48285790828679069135982857251, −6.68795395973771317664138866965, −5.92922750536923791224234033848, −5.39130907775536442430147302103, −4.30763893815973840512504000220, −3.67419019211473414565029050569, −2.22027027167738786278901006374, −0.979215445602694142476161031703,
0.979215445602694142476161031703, 2.22027027167738786278901006374, 3.67419019211473414565029050569, 4.30763893815973840512504000220, 5.39130907775536442430147302103, 5.92922750536923791224234033848, 6.68795395973771317664138866965, 7.48285790828679069135982857251, 8.282158654389640906495241771473, 9.220703985348687024835575760411