Properties

Label 2-24e2-1.1-c3-0-26
Degree $2$
Conductor $576$
Sign $-1$
Analytic cond. $33.9851$
Root an. cond. $5.82967$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10·5-s − 4·7-s + 20·11-s − 70·13-s − 90·17-s − 140·19-s + 192·23-s − 25·25-s − 134·29-s + 100·31-s − 40·35-s + 170·37-s + 110·41-s − 532·43-s + 56·47-s − 327·49-s − 430·53-s + 200·55-s − 20·59-s − 270·61-s − 700·65-s + 524·67-s + 80·71-s + 330·73-s − 80·77-s + 1.06e3·79-s − 1.18e3·83-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.215·7-s + 0.548·11-s − 1.49·13-s − 1.28·17-s − 1.69·19-s + 1.74·23-s − 1/5·25-s − 0.858·29-s + 0.579·31-s − 0.193·35-s + 0.755·37-s + 0.419·41-s − 1.88·43-s + 0.173·47-s − 0.953·49-s − 1.11·53-s + 0.490·55-s − 0.0441·59-s − 0.566·61-s − 1.33·65-s + 0.955·67-s + 0.133·71-s + 0.529·73-s − 0.118·77-s + 1.50·79-s − 1.57·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 576 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(576\)    =    \(2^{6} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(33.9851\)
Root analytic conductor: \(5.82967\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 576,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 2 p T + p^{3} T^{2} \)
7 \( 1 + 4 T + p^{3} T^{2} \)
11 \( 1 - 20 T + p^{3} T^{2} \)
13 \( 1 + 70 T + p^{3} T^{2} \)
17 \( 1 + 90 T + p^{3} T^{2} \)
19 \( 1 + 140 T + p^{3} T^{2} \)
23 \( 1 - 192 T + p^{3} T^{2} \)
29 \( 1 + 134 T + p^{3} T^{2} \)
31 \( 1 - 100 T + p^{3} T^{2} \)
37 \( 1 - 170 T + p^{3} T^{2} \)
41 \( 1 - 110 T + p^{3} T^{2} \)
43 \( 1 + 532 T + p^{3} T^{2} \)
47 \( 1 - 56 T + p^{3} T^{2} \)
53 \( 1 + 430 T + p^{3} T^{2} \)
59 \( 1 + 20 T + p^{3} T^{2} \)
61 \( 1 + 270 T + p^{3} T^{2} \)
67 \( 1 - 524 T + p^{3} T^{2} \)
71 \( 1 - 80 T + p^{3} T^{2} \)
73 \( 1 - 330 T + p^{3} T^{2} \)
79 \( 1 - 1060 T + p^{3} T^{2} \)
83 \( 1 + 1188 T + p^{3} T^{2} \)
89 \( 1 + 1274 T + p^{3} T^{2} \)
97 \( 1 + 590 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.694397508797212442745035212872, −9.245377962400217435059977358078, −8.208332681649884755425609288332, −6.89199337660583853317715284780, −6.41716780902006901716200848148, −5.16741838372930162984051879029, −4.30632769635815019718880272138, −2.74634064417202034913997095541, −1.81110578588999287003461155390, 0, 1.81110578588999287003461155390, 2.74634064417202034913997095541, 4.30632769635815019718880272138, 5.16741838372930162984051879029, 6.41716780902006901716200848148, 6.89199337660583853317715284780, 8.208332681649884755425609288332, 9.245377962400217435059977358078, 9.694397508797212442745035212872

Graph of the $Z$-function along the critical line