Properties

Label 2-252-1.1-c7-0-2
Degree $2$
Conductor $252$
Sign $1$
Analytic cond. $78.7210$
Root an. cond. $8.87248$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 100·5-s − 343·7-s − 2.77e3·11-s − 3.29e3·13-s − 5.90e3·17-s + 6.64e3·19-s − 1.98e3·23-s − 6.81e4·25-s + 2.08e5·29-s − 1.17e5·31-s + 3.43e4·35-s − 3.35e5·37-s + 2.65e5·41-s − 9.32e4·43-s + 6.57e5·47-s + 1.17e5·49-s + 6.08e5·53-s + 2.77e5·55-s + 5.36e5·59-s − 1.79e6·61-s + 3.29e5·65-s + 2.12e6·67-s + 1.19e6·71-s + 1.05e6·73-s + 9.51e5·77-s + 9.98e5·79-s − 3.89e6·83-s + ⋯
L(s)  = 1  − 0.357·5-s − 0.377·7-s − 0.628·11-s − 0.415·13-s − 0.291·17-s + 0.222·19-s − 0.0339·23-s − 0.871·25-s + 1.58·29-s − 0.710·31-s + 0.135·35-s − 1.08·37-s + 0.601·41-s − 0.178·43-s + 0.923·47-s + 1/7·49-s + 0.561·53-s + 0.224·55-s + 0.339·59-s − 1.01·61-s + 0.148·65-s + 0.862·67-s + 0.394·71-s + 0.317·73-s + 0.237·77-s + 0.227·79-s − 0.748·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(78.7210\)
Root analytic conductor: \(8.87248\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 252,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.317166856\)
\(L(\frac12)\) \(\approx\) \(1.317166856\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + p^{3} T \)
good5 \( 1 + 4 p^{2} T + p^{7} T^{2} \)
11 \( 1 + 2774 T + p^{7} T^{2} \)
13 \( 1 + 3294 T + p^{7} T^{2} \)
17 \( 1 + 5900 T + p^{7} T^{2} \)
19 \( 1 - 6644 T + p^{7} T^{2} \)
23 \( 1 + 1982 T + p^{7} T^{2} \)
29 \( 1 - 208106 T + p^{7} T^{2} \)
31 \( 1 + 117792 T + p^{7} T^{2} \)
37 \( 1 + 335686 T + p^{7} T^{2} \)
41 \( 1 - 265488 T + p^{7} T^{2} \)
43 \( 1 + 93292 T + p^{7} T^{2} \)
47 \( 1 - 657516 T + p^{7} T^{2} \)
53 \( 1 - 608718 T + p^{7} T^{2} \)
59 \( 1 - 536120 T + p^{7} T^{2} \)
61 \( 1 + 1797090 T + p^{7} T^{2} \)
67 \( 1 - 2123176 T + p^{7} T^{2} \)
71 \( 1 - 1191214 T + p^{7} T^{2} \)
73 \( 1 - 1056430 T + p^{7} T^{2} \)
79 \( 1 - 998484 T + p^{7} T^{2} \)
83 \( 1 + 3898004 T + p^{7} T^{2} \)
89 \( 1 - 4622352 T + p^{7} T^{2} \)
97 \( 1 - 15287710 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72544911227137829316975528226, −9.917145854374944407909832518393, −8.844270400208669519473647219817, −7.82655258821422345976416271711, −6.91545686590752346873852887979, −5.72336211121508169178957754832, −4.59847020299536631694611403790, −3.38301691945411161704719336835, −2.19933198981379827249600908107, −0.56249349651547869118352319677, 0.56249349651547869118352319677, 2.19933198981379827249600908107, 3.38301691945411161704719336835, 4.59847020299536631694611403790, 5.72336211121508169178957754832, 6.91545686590752346873852887979, 7.82655258821422345976416271711, 8.844270400208669519473647219817, 9.917145854374944407909832518393, 10.72544911227137829316975528226

Graph of the $Z$-function along the critical line