L(s) = 1 | + 209.·5-s + (775. + 471. i)7-s − 2.15e3i·11-s − 6.16e3i·13-s − 1.20e4·17-s − 3.52e4i·19-s − 3.86e4i·23-s − 3.43e4·25-s − 4.46e4i·29-s − 3.92e4i·31-s + (1.62e5 + 9.87e4i)35-s − 9.53e4·37-s + 3.59e5·41-s + 1.52e5·43-s − 5.22e5·47-s + ⋯ |
L(s) = 1 | + 0.748·5-s + (0.854 + 0.519i)7-s − 0.488i·11-s − 0.777i·13-s − 0.593·17-s − 1.17i·19-s − 0.662i·23-s − 0.439·25-s − 0.339i·29-s − 0.236i·31-s + (0.639 + 0.389i)35-s − 0.309·37-s + 0.813·41-s + 0.293·43-s − 0.733·47-s + ⋯ |
Λ(s)=(=(252s/2ΓC(s)L(s)(0.0686+0.997i)Λ(8−s)
Λ(s)=(=(252s/2ΓC(s+7/2)L(s)(0.0686+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
252
= 22⋅32⋅7
|
Sign: |
0.0686+0.997i
|
Analytic conductor: |
78.7210 |
Root analytic conductor: |
8.87248 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ252(125,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 252, ( :7/2), 0.0686+0.997i)
|
Particular Values
L(4) |
≈ |
2.174794356 |
L(21) |
≈ |
2.174794356 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−775.−471.i)T |
good | 5 | 1−209.T+7.81e4T2 |
| 11 | 1+2.15e3iT−1.94e7T2 |
| 13 | 1+6.16e3iT−6.27e7T2 |
| 17 | 1+1.20e4T+4.10e8T2 |
| 19 | 1+3.52e4iT−8.93e8T2 |
| 23 | 1+3.86e4iT−3.40e9T2 |
| 29 | 1+4.46e4iT−1.72e10T2 |
| 31 | 1+3.92e4iT−2.75e10T2 |
| 37 | 1+9.53e4T+9.49e10T2 |
| 41 | 1−3.59e5T+1.94e11T2 |
| 43 | 1−1.52e5T+2.71e11T2 |
| 47 | 1+5.22e5T+5.06e11T2 |
| 53 | 1+8.02e4iT−1.17e12T2 |
| 59 | 1+2.58e6T+2.48e12T2 |
| 61 | 1+2.42e5iT−3.14e12T2 |
| 67 | 1−2.42e6T+6.06e12T2 |
| 71 | 1+2.71e6iT−9.09e12T2 |
| 73 | 1+1.96e6iT−1.10e13T2 |
| 79 | 1−2.72e6T+1.92e13T2 |
| 83 | 1+3.10e6T+2.71e13T2 |
| 89 | 1−1.57e6T+4.42e13T2 |
| 97 | 1+1.06e7iT−8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70006900928762988767395541660, −9.519427887094501159912216808131, −8.676322131839851044882467621048, −7.74747705310515996231219353253, −6.39601069146260982961240307912, −5.50113461702600591900789798765, −4.52433737397656033266824045436, −2.86625560717962111477970079477, −1.88298851425727505901775127964, −0.48084195043951146869959708830,
1.35003009209943599500158213893, 2.12085954080265360350546634410, 3.84431258512652518287223809086, 4.87291493184342804744747979667, 5.98702831758723675089565251693, 7.09895680525900502325844177509, 8.063528588288816653191919092967, 9.213165143363381201516719724228, 10.05237767451851644141757043791, 10.98543896256466747889938905207