Properties

Label 2-252-21.20-c7-0-15
Degree $2$
Conductor $252$
Sign $0.0686 + 0.997i$
Analytic cond. $78.7210$
Root an. cond. $8.87248$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 209.·5-s + (775. + 471. i)7-s − 2.15e3i·11-s − 6.16e3i·13-s − 1.20e4·17-s − 3.52e4i·19-s − 3.86e4i·23-s − 3.43e4·25-s − 4.46e4i·29-s − 3.92e4i·31-s + (1.62e5 + 9.87e4i)35-s − 9.53e4·37-s + 3.59e5·41-s + 1.52e5·43-s − 5.22e5·47-s + ⋯
L(s)  = 1  + 0.748·5-s + (0.854 + 0.519i)7-s − 0.488i·11-s − 0.777i·13-s − 0.593·17-s − 1.17i·19-s − 0.662i·23-s − 0.439·25-s − 0.339i·29-s − 0.236i·31-s + (0.639 + 0.389i)35-s − 0.309·37-s + 0.813·41-s + 0.293·43-s − 0.733·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0686 + 0.997i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 252 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.0686 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(252\)    =    \(2^{2} \cdot 3^{2} \cdot 7\)
Sign: $0.0686 + 0.997i$
Analytic conductor: \(78.7210\)
Root analytic conductor: \(8.87248\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{252} (125, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 252,\ (\ :7/2),\ 0.0686 + 0.997i)\)

Particular Values

\(L(4)\) \(\approx\) \(2.174794356\)
\(L(\frac12)\) \(\approx\) \(2.174794356\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-775. - 471. i)T \)
good5 \( 1 - 209.T + 7.81e4T^{2} \)
11 \( 1 + 2.15e3iT - 1.94e7T^{2} \)
13 \( 1 + 6.16e3iT - 6.27e7T^{2} \)
17 \( 1 + 1.20e4T + 4.10e8T^{2} \)
19 \( 1 + 3.52e4iT - 8.93e8T^{2} \)
23 \( 1 + 3.86e4iT - 3.40e9T^{2} \)
29 \( 1 + 4.46e4iT - 1.72e10T^{2} \)
31 \( 1 + 3.92e4iT - 2.75e10T^{2} \)
37 \( 1 + 9.53e4T + 9.49e10T^{2} \)
41 \( 1 - 3.59e5T + 1.94e11T^{2} \)
43 \( 1 - 1.52e5T + 2.71e11T^{2} \)
47 \( 1 + 5.22e5T + 5.06e11T^{2} \)
53 \( 1 + 8.02e4iT - 1.17e12T^{2} \)
59 \( 1 + 2.58e6T + 2.48e12T^{2} \)
61 \( 1 + 2.42e5iT - 3.14e12T^{2} \)
67 \( 1 - 2.42e6T + 6.06e12T^{2} \)
71 \( 1 + 2.71e6iT - 9.09e12T^{2} \)
73 \( 1 + 1.96e6iT - 1.10e13T^{2} \)
79 \( 1 - 2.72e6T + 1.92e13T^{2} \)
83 \( 1 + 3.10e6T + 2.71e13T^{2} \)
89 \( 1 - 1.57e6T + 4.42e13T^{2} \)
97 \( 1 + 1.06e7iT - 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70006900928762988767395541660, −9.519427887094501159912216808131, −8.676322131839851044882467621048, −7.74747705310515996231219353253, −6.39601069146260982961240307912, −5.50113461702600591900789798765, −4.52433737397656033266824045436, −2.86625560717962111477970079477, −1.88298851425727505901775127964, −0.48084195043951146869959708830, 1.35003009209943599500158213893, 2.12085954080265360350546634410, 3.84431258512652518287223809086, 4.87291493184342804744747979667, 5.98702831758723675089565251693, 7.09895680525900502325844177509, 8.063528588288816653191919092967, 9.213165143363381201516719724228, 10.05237767451851644141757043791, 10.98543896256466747889938905207

Graph of the $Z$-function along the critical line