L(s) = 1 | + i·2-s − i·3-s + 6-s − 7-s + i·8-s − 9-s + i·11-s + 13-s − i·14-s − 16-s + i·17-s − i·18-s + i·21-s − 22-s + 24-s + 25-s + ⋯ |
L(s) = 1 | + i·2-s − i·3-s + 6-s − 7-s + i·8-s − 9-s + i·11-s + 13-s − i·14-s − 16-s + i·17-s − i·18-s + i·21-s − 22-s + 24-s + 25-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)−iΛ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)−iΛ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
−i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(842,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), −i)
|
Particular Values
L(21) |
≈ |
1.126783645 |
L(21) |
≈ |
1.126783645 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+iT |
| 29 | 1 |
good | 2 | 1−iT−T2 |
| 5 | 1−T2 |
| 7 | 1+T+T2 |
| 11 | 1−iT−T2 |
| 13 | 1−T+T2 |
| 17 | 1−iT−T2 |
| 19 | 1+T2 |
| 23 | 1−T2 |
| 31 | 1+T2 |
| 37 | 1+T2 |
| 41 | 1−2iT−T2 |
| 43 | 1+T2 |
| 47 | 1+iT−T2 |
| 53 | 1−T2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1−T+T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1+T2 |
| 83 | 1−T2 |
| 89 | 1−iT−T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.914647264808119551147033118802, −8.302330534995812690361097935032, −7.63289350754837642783939638484, −6.75776201656374617482564800148, −6.48837348102456735980562929759, −5.81783706053121053892286880332, −4.85560986587378876305451612939, −3.54795345643235749065271537539, −2.55393028917965622868668693700, −1.49383854093713695742919085709,
0.76082110537880551539079789685, 2.45728836171047692851071837289, 3.31629230445045059492151244925, 3.61433403540286288046286177507, 4.72496452624142138876593834835, 5.80858522734923972651757789858, 6.40208766299634909919109050041, 7.32972770064118580662439226818, 8.646948265710912958429567992212, 9.046429866415798144627632653152