L(s) = 1 | + i·2-s − i·3-s + 6-s − 7-s + i·8-s − 9-s + i·11-s + 13-s − i·14-s − 16-s + i·17-s − i·18-s + i·21-s − 22-s + 24-s + 25-s + ⋯ |
L(s) = 1 | + i·2-s − i·3-s + 6-s − 7-s + i·8-s − 9-s + i·11-s + 13-s − i·14-s − 16-s + i·17-s − i·18-s + i·21-s − 22-s + 24-s + 25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.126783645\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.126783645\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 29 | \( 1 \) |
good | 2 | \( 1 - iT - T^{2} \) |
| 5 | \( 1 - T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( 1 - iT - T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - 2iT - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + iT - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 - T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - iT - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.914647264808119551147033118802, −8.302330534995812690361097935032, −7.63289350754837642783939638484, −6.75776201656374617482564800148, −6.48837348102456735980562929759, −5.81783706053121053892286880332, −4.85560986587378876305451612939, −3.54795345643235749065271537539, −2.55393028917965622868668693700, −1.49383854093713695742919085709,
0.76082110537880551539079789685, 2.45728836171047692851071837289, 3.31629230445045059492151244925, 3.61433403540286288046286177507, 4.72496452624142138876593834835, 5.80858522734923972651757789858, 6.40208766299634909919109050041, 7.32972770064118580662439226818, 8.646948265710912958429567992212, 9.046429866415798144627632653152