L(s) = 1 | + (−0.623 + 0.781i)2-s + (−0.222 + 0.974i)3-s + (−0.623 − 0.781i)6-s + (0.222 − 0.974i)7-s + (−0.900 − 0.433i)8-s + (−0.900 − 0.433i)9-s + (0.900 − 0.433i)11-s + (0.900 − 0.433i)13-s + (0.623 + 0.781i)14-s + (0.900 − 0.433i)16-s − 17-s + (0.900 − 0.433i)18-s + (0.900 + 0.433i)21-s + (−0.222 + 0.974i)22-s + (0.623 − 0.781i)24-s + (−0.222 − 0.974i)25-s + ⋯ |
L(s) = 1 | + (−0.623 + 0.781i)2-s + (−0.222 + 0.974i)3-s + (−0.623 − 0.781i)6-s + (0.222 − 0.974i)7-s + (−0.900 − 0.433i)8-s + (−0.900 − 0.433i)9-s + (0.900 − 0.433i)11-s + (0.900 − 0.433i)13-s + (0.623 + 0.781i)14-s + (0.900 − 0.433i)16-s − 17-s + (0.900 − 0.433i)18-s + (0.900 + 0.433i)21-s + (−0.222 + 0.974i)22-s + (0.623 − 0.781i)24-s + (−0.222 − 0.974i)25-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.510−0.859i)Λ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.510−0.859i)Λ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
0.510−0.859i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(1949,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), 0.510−0.859i)
|
Particular Values
L(21) |
≈ |
0.7939154809 |
L(21) |
≈ |
0.7939154809 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.222−0.974i)T |
| 29 | 1 |
good | 2 | 1+(0.623−0.781i)T+(−0.222−0.974i)T2 |
| 5 | 1+(0.222+0.974i)T2 |
| 7 | 1+(−0.222+0.974i)T+(−0.900−0.433i)T2 |
| 11 | 1+(−0.900+0.433i)T+(0.623−0.781i)T2 |
| 13 | 1+(−0.900+0.433i)T+(0.623−0.781i)T2 |
| 17 | 1+T+T2 |
| 19 | 1+(0.900−0.433i)T2 |
| 23 | 1+(0.222−0.974i)T2 |
| 31 | 1+(0.222+0.974i)T2 |
| 37 | 1+(−0.623−0.781i)T2 |
| 41 | 1−2T+T2 |
| 43 | 1+(0.222−0.974i)T2 |
| 47 | 1+(−0.900+0.433i)T+(0.623−0.781i)T2 |
| 53 | 1+(0.222+0.974i)T2 |
| 59 | 1−T2 |
| 61 | 1+(0.900+0.433i)T2 |
| 67 | 1+(−0.900−0.433i)T+(0.623+0.781i)T2 |
| 71 | 1+(−0.623+0.781i)T2 |
| 73 | 1+(0.222−0.974i)T2 |
| 79 | 1+(−0.623−0.781i)T2 |
| 83 | 1+(0.900−0.433i)T2 |
| 89 | 1+(0.623−0.781i)T+(−0.222−0.974i)T2 |
| 97 | 1+(0.900−0.433i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.075290674130316140948668033697, −8.516866141326428388733053870213, −7.84795043138989476207676539733, −6.85977885846635879674009512125, −6.27691224766498971701174091929, −5.55316526519010959079418338599, −4.14087115939527983283314722695, −3.97010207629327529820515278278, −2.78662899477071849093818123149, −0.78766672838909503018676717996,
1.18838779969392990850082374514, 1.98173228874256899409299350788, 2.69511509960339429108581784128, 3.98933783498493783356251050583, 5.27532470345007444996105123508, 6.03733259571589403954651903229, 6.55554403976147136582449216020, 7.52370273865906531685091145504, 8.510537994458242502978476829168, 9.035057650702593410859713023437