L(s) = 1 | + (−0.623 + 0.781i)2-s + (−0.222 + 0.974i)3-s + (−0.623 − 0.781i)6-s + (0.222 − 0.974i)7-s + (−0.900 − 0.433i)8-s + (−0.900 − 0.433i)9-s + (0.900 − 0.433i)11-s + (0.900 − 0.433i)13-s + (0.623 + 0.781i)14-s + (0.900 − 0.433i)16-s − 17-s + (0.900 − 0.433i)18-s + (0.900 + 0.433i)21-s + (−0.222 + 0.974i)22-s + (0.623 − 0.781i)24-s + (−0.222 − 0.974i)25-s + ⋯ |
L(s) = 1 | + (−0.623 + 0.781i)2-s + (−0.222 + 0.974i)3-s + (−0.623 − 0.781i)6-s + (0.222 − 0.974i)7-s + (−0.900 − 0.433i)8-s + (−0.900 − 0.433i)9-s + (0.900 − 0.433i)11-s + (0.900 − 0.433i)13-s + (0.623 + 0.781i)14-s + (0.900 − 0.433i)16-s − 17-s + (0.900 − 0.433i)18-s + (0.900 + 0.433i)21-s + (−0.222 + 0.974i)22-s + (0.623 − 0.781i)24-s + (−0.222 − 0.974i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.510 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.510 - 0.859i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7939154809\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7939154809\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.222 - 0.974i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.623 - 0.781i)T + (-0.222 - 0.974i)T^{2} \) |
| 5 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 7 | \( 1 + (-0.222 + 0.974i)T + (-0.900 - 0.433i)T^{2} \) |
| 11 | \( 1 + (-0.900 + 0.433i)T + (0.623 - 0.781i)T^{2} \) |
| 13 | \( 1 + (-0.900 + 0.433i)T + (0.623 - 0.781i)T^{2} \) |
| 17 | \( 1 + T + T^{2} \) |
| 19 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 23 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 31 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 37 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 41 | \( 1 - 2T + T^{2} \) |
| 43 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (-0.900 + 0.433i)T + (0.623 - 0.781i)T^{2} \) |
| 53 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 67 | \( 1 + (-0.900 - 0.433i)T + (0.623 + 0.781i)T^{2} \) |
| 71 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 79 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 83 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 89 | \( 1 + (0.623 - 0.781i)T + (-0.222 - 0.974i)T^{2} \) |
| 97 | \( 1 + (0.900 - 0.433i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.075290674130316140948668033697, −8.516866141326428388733053870213, −7.84795043138989476207676539733, −6.85977885846635879674009512125, −6.27691224766498971701174091929, −5.55316526519010959079418338599, −4.14087115939527983283314722695, −3.97010207629327529820515278278, −2.78662899477071849093818123149, −0.78766672838909503018676717996,
1.18838779969392990850082374514, 1.98173228874256899409299350788, 2.69511509960339429108581784128, 3.98933783498493783356251050583, 5.27532470345007444996105123508, 6.03733259571589403954651903229, 6.55554403976147136582449216020, 7.52370273865906531685091145504, 8.510537994458242502978476829168, 9.035057650702593410859713023437