L(s) = 1 | + (−0.781 + 0.623i)2-s + (−0.974 + 0.222i)3-s + (0.623 − 0.781i)6-s + (0.222 + 0.974i)7-s + (−0.433 − 0.900i)8-s + (0.900 − 0.433i)9-s + (0.433 − 0.900i)11-s + (−0.900 − 0.433i)13-s + (−0.781 − 0.623i)14-s + (0.900 + 0.433i)16-s + i·17-s + (−0.433 + 0.900i)18-s + (−0.433 − 0.900i)21-s + (0.222 + 0.974i)22-s + (0.623 + 0.781i)24-s + (−0.222 + 0.974i)25-s + ⋯ |
L(s) = 1 | + (−0.781 + 0.623i)2-s + (−0.974 + 0.222i)3-s + (0.623 − 0.781i)6-s + (0.222 + 0.974i)7-s + (−0.433 − 0.900i)8-s + (0.900 − 0.433i)9-s + (0.433 − 0.900i)11-s + (−0.900 − 0.433i)13-s + (−0.781 − 0.623i)14-s + (0.900 + 0.433i)16-s + i·17-s + (−0.433 + 0.900i)18-s + (−0.433 − 0.900i)21-s + (0.222 + 0.974i)22-s + (0.623 + 0.781i)24-s + (−0.222 + 0.974i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3609038172\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3609038172\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.974 - 0.222i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.781 - 0.623i)T + (0.222 - 0.974i)T^{2} \) |
| 5 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 7 | \( 1 + (-0.222 - 0.974i)T + (-0.900 + 0.433i)T^{2} \) |
| 11 | \( 1 + (-0.433 + 0.900i)T + (-0.623 - 0.781i)T^{2} \) |
| 13 | \( 1 + (0.900 + 0.433i)T + (0.623 + 0.781i)T^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 23 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 31 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 37 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 41 | \( 1 - 2iT - T^{2} \) |
| 43 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (0.433 - 0.900i)T + (-0.623 - 0.781i)T^{2} \) |
| 53 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 67 | \( 1 + (0.900 - 0.433i)T + (0.623 - 0.781i)T^{2} \) |
| 71 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 73 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 79 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 83 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (0.781 - 0.623i)T + (0.222 - 0.974i)T^{2} \) |
| 97 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.432424101667715798262135514773, −8.648128060663696962482393204613, −7.998157485043941215551613657760, −7.21655236272982117043129311631, −6.29254917107855502479411855945, −5.86857762944621285243571976464, −5.00126576754335610350657000264, −3.94749949634136722223036702698, −2.95772249378844592059610971721, −1.32782742937904939144006012620,
0.38772164171227691783980810970, 1.57415838426721702884835771536, 2.43089553112146849748320424500, 4.07219600912948579015888167892, 4.78638693613176157531277265664, 5.49825767891223805188778626607, 6.63935512492919216181765467299, 7.20112824119065944054086200593, 7.85874676179847066485943359252, 9.022933957641405759152257782877