L(s) = 1 | + (−0.781 + 0.623i)2-s + (−0.974 + 0.222i)3-s + (0.623 − 0.781i)6-s + (0.222 + 0.974i)7-s + (−0.433 − 0.900i)8-s + (0.900 − 0.433i)9-s + (0.433 − 0.900i)11-s + (−0.900 − 0.433i)13-s + (−0.781 − 0.623i)14-s + (0.900 + 0.433i)16-s + i·17-s + (−0.433 + 0.900i)18-s + (−0.433 − 0.900i)21-s + (0.222 + 0.974i)22-s + (0.623 + 0.781i)24-s + (−0.222 + 0.974i)25-s + ⋯ |
L(s) = 1 | + (−0.781 + 0.623i)2-s + (−0.974 + 0.222i)3-s + (0.623 − 0.781i)6-s + (0.222 + 0.974i)7-s + (−0.433 − 0.900i)8-s + (0.900 − 0.433i)9-s + (0.433 − 0.900i)11-s + (−0.900 − 0.433i)13-s + (−0.781 − 0.623i)14-s + (0.900 + 0.433i)16-s + i·17-s + (−0.433 + 0.900i)18-s + (−0.433 − 0.900i)21-s + (0.222 + 0.974i)22-s + (0.623 + 0.781i)24-s + (−0.222 + 0.974i)25-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)(−0.996−0.0833i)Λ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)(−0.996−0.0833i)Λ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
−0.996−0.0833i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(1619,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), −0.996−0.0833i)
|
Particular Values
L(21) |
≈ |
0.3609038172 |
L(21) |
≈ |
0.3609038172 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.974−0.222i)T |
| 29 | 1 |
good | 2 | 1+(0.781−0.623i)T+(0.222−0.974i)T2 |
| 5 | 1+(0.222−0.974i)T2 |
| 7 | 1+(−0.222−0.974i)T+(−0.900+0.433i)T2 |
| 11 | 1+(−0.433+0.900i)T+(−0.623−0.781i)T2 |
| 13 | 1+(0.900+0.433i)T+(0.623+0.781i)T2 |
| 17 | 1−iT−T2 |
| 19 | 1+(−0.900−0.433i)T2 |
| 23 | 1+(0.222+0.974i)T2 |
| 31 | 1+(−0.222+0.974i)T2 |
| 37 | 1+(0.623−0.781i)T2 |
| 41 | 1−2iT−T2 |
| 43 | 1+(−0.222−0.974i)T2 |
| 47 | 1+(0.433−0.900i)T+(−0.623−0.781i)T2 |
| 53 | 1+(0.222−0.974i)T2 |
| 59 | 1−T2 |
| 61 | 1+(−0.900+0.433i)T2 |
| 67 | 1+(0.900−0.433i)T+(0.623−0.781i)T2 |
| 71 | 1+(−0.623−0.781i)T2 |
| 73 | 1+(−0.222−0.974i)T2 |
| 79 | 1+(0.623−0.781i)T2 |
| 83 | 1+(0.900+0.433i)T2 |
| 89 | 1+(0.781−0.623i)T+(0.222−0.974i)T2 |
| 97 | 1+(−0.900−0.433i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.432424101667715798262135514773, −8.648128060663696962482393204613, −7.998157485043941215551613657760, −7.21655236272982117043129311631, −6.29254917107855502479411855945, −5.86857762944621285243571976464, −5.00126576754335610350657000264, −3.94749949634136722223036702698, −2.95772249378844592059610971721, −1.32782742937904939144006012620,
0.38772164171227691783980810970, 1.57415838426721702884835771536, 2.43089553112146849748320424500, 4.07219600912948579015888167892, 4.78638693613176157531277265664, 5.49825767891223805188778626607, 6.63935512492919216181765467299, 7.20112824119065944054086200593, 7.85874676179847066485943359252, 9.022933957641405759152257782877