Properties

Label 2-2523-87.65-c0-0-1
Degree $2$
Conductor $2523$
Sign $0.745 - 0.666i$
Analytic cond. $1.25914$
Root an. cond. $1.12211$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.900 − 0.433i)3-s + (−0.900 + 0.433i)4-s + (1.45 + 0.702i)7-s + (0.623 + 0.781i)9-s + 12-s + (0.385 − 0.483i)13-s + (0.623 − 0.781i)16-s + (−0.556 + 0.268i)19-s + (−1.00 − 1.26i)21-s + (−0.900 + 0.433i)25-s + (−0.222 − 0.974i)27-s − 1.61·28-s + (0.360 + 1.57i)31-s + (−0.900 − 0.433i)36-s + (0.385 + 0.483i)37-s + ⋯
L(s)  = 1  + (−0.900 − 0.433i)3-s + (−0.900 + 0.433i)4-s + (1.45 + 0.702i)7-s + (0.623 + 0.781i)9-s + 12-s + (0.385 − 0.483i)13-s + (0.623 − 0.781i)16-s + (−0.556 + 0.268i)19-s + (−1.00 − 1.26i)21-s + (−0.900 + 0.433i)25-s + (−0.222 − 0.974i)27-s − 1.61·28-s + (0.360 + 1.57i)31-s + (−0.900 − 0.433i)36-s + (0.385 + 0.483i)37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.745 - 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.745 - 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2523\)    =    \(3 \cdot 29^{2}\)
Sign: $0.745 - 0.666i$
Analytic conductor: \(1.25914\)
Root analytic conductor: \(1.12211\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2523} (2327, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2523,\ (\ :0),\ 0.745 - 0.666i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8246255712\)
\(L(\frac12)\) \(\approx\) \(0.8246255712\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.900 + 0.433i)T \)
29 \( 1 \)
good2 \( 1 + (0.900 - 0.433i)T^{2} \)
5 \( 1 + (0.900 - 0.433i)T^{2} \)
7 \( 1 + (-1.45 - 0.702i)T + (0.623 + 0.781i)T^{2} \)
11 \( 1 + (0.222 + 0.974i)T^{2} \)
13 \( 1 + (-0.385 + 0.483i)T + (-0.222 - 0.974i)T^{2} \)
17 \( 1 - T^{2} \)
19 \( 1 + (0.556 - 0.268i)T + (0.623 - 0.781i)T^{2} \)
23 \( 1 + (0.900 + 0.433i)T^{2} \)
31 \( 1 + (-0.360 - 1.57i)T + (-0.900 + 0.433i)T^{2} \)
37 \( 1 + (-0.385 - 0.483i)T + (-0.222 + 0.974i)T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + (-0.360 + 1.57i)T + (-0.900 - 0.433i)T^{2} \)
47 \( 1 + (0.222 + 0.974i)T^{2} \)
53 \( 1 + (0.900 - 0.433i)T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + (-1.45 - 0.702i)T + (0.623 + 0.781i)T^{2} \)
67 \( 1 + (-0.385 - 0.483i)T + (-0.222 + 0.974i)T^{2} \)
71 \( 1 + (0.222 + 0.974i)T^{2} \)
73 \( 1 + (0.137 - 0.602i)T + (-0.900 - 0.433i)T^{2} \)
79 \( 1 + (-0.385 - 0.483i)T + (-0.222 + 0.974i)T^{2} \)
83 \( 1 + (-0.623 + 0.781i)T^{2} \)
89 \( 1 + (0.900 - 0.433i)T^{2} \)
97 \( 1 + (-1.45 + 0.702i)T + (0.623 - 0.781i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.915196549844056530390481070249, −8.347702571146648837073108232421, −7.82260068812345610508584919213, −6.96140059069370864131346708423, −5.80787460890999824735638659309, −5.29292267914781341713093294937, −4.64603121360270580670117956783, −3.74086485718717801968062371829, −2.29316375908271317754043981375, −1.18746750062128877200237639197, 0.77893374106820349585612958900, 1.89589849606511577362516958430, 3.86483197461043431239572689782, 4.36837053153204769597183802131, 4.90503272174198410642076775863, 5.80571678180759842041311837681, 6.45637479248285023736467774111, 7.62391340941950229014517278692, 8.221923093350793731580860654309, 9.146326981478220710890500363103

Graph of the $Z$-function along the critical line