L(s) = 1 | + (−0.900 − 0.433i)3-s + (−0.900 + 0.433i)4-s + (1.45 + 0.702i)7-s + (0.623 + 0.781i)9-s + 12-s + (0.385 − 0.483i)13-s + (0.623 − 0.781i)16-s + (−0.556 + 0.268i)19-s + (−1.00 − 1.26i)21-s + (−0.900 + 0.433i)25-s + (−0.222 − 0.974i)27-s − 1.61·28-s + (0.360 + 1.57i)31-s + (−0.900 − 0.433i)36-s + (0.385 + 0.483i)37-s + ⋯ |
L(s) = 1 | + (−0.900 − 0.433i)3-s + (−0.900 + 0.433i)4-s + (1.45 + 0.702i)7-s + (0.623 + 0.781i)9-s + 12-s + (0.385 − 0.483i)13-s + (0.623 − 0.781i)16-s + (−0.556 + 0.268i)19-s + (−1.00 − 1.26i)21-s + (−0.900 + 0.433i)25-s + (−0.222 − 0.974i)27-s − 1.61·28-s + (0.360 + 1.57i)31-s + (−0.900 − 0.433i)36-s + (0.385 + 0.483i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.745 - 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2523 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.745 - 0.666i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8246255712\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8246255712\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.900 + 0.433i)T \) |
| 29 | \( 1 \) |
good | 2 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 5 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 7 | \( 1 + (-1.45 - 0.702i)T + (0.623 + 0.781i)T^{2} \) |
| 11 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 13 | \( 1 + (-0.385 + 0.483i)T + (-0.222 - 0.974i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + (0.556 - 0.268i)T + (0.623 - 0.781i)T^{2} \) |
| 23 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 31 | \( 1 + (-0.360 - 1.57i)T + (-0.900 + 0.433i)T^{2} \) |
| 37 | \( 1 + (-0.385 - 0.483i)T + (-0.222 + 0.974i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + (-0.360 + 1.57i)T + (-0.900 - 0.433i)T^{2} \) |
| 47 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 53 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (-1.45 - 0.702i)T + (0.623 + 0.781i)T^{2} \) |
| 67 | \( 1 + (-0.385 - 0.483i)T + (-0.222 + 0.974i)T^{2} \) |
| 71 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 73 | \( 1 + (0.137 - 0.602i)T + (-0.900 - 0.433i)T^{2} \) |
| 79 | \( 1 + (-0.385 - 0.483i)T + (-0.222 + 0.974i)T^{2} \) |
| 83 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 89 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 97 | \( 1 + (-1.45 + 0.702i)T + (0.623 - 0.781i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.915196549844056530390481070249, −8.347702571146648837073108232421, −7.82260068812345610508584919213, −6.96140059069370864131346708423, −5.80787460890999824735638659309, −5.29292267914781341713093294937, −4.64603121360270580670117956783, −3.74086485718717801968062371829, −2.29316375908271317754043981375, −1.18746750062128877200237639197,
0.77893374106820349585612958900, 1.89589849606511577362516958430, 3.86483197461043431239572689782, 4.36837053153204769597183802131, 4.90503272174198410642076775863, 5.80571678180759842041311837681, 6.45637479248285023736467774111, 7.62391340941950229014517278692, 8.221923093350793731580860654309, 9.146326981478220710890500363103