L(s) = 1 | + (−0.900 − 0.433i)3-s + (−0.900 + 0.433i)4-s + (1.45 + 0.702i)7-s + (0.623 + 0.781i)9-s + 12-s + (0.385 − 0.483i)13-s + (0.623 − 0.781i)16-s + (−0.556 + 0.268i)19-s + (−1.00 − 1.26i)21-s + (−0.900 + 0.433i)25-s + (−0.222 − 0.974i)27-s − 1.61·28-s + (0.360 + 1.57i)31-s + (−0.900 − 0.433i)36-s + (0.385 + 0.483i)37-s + ⋯ |
L(s) = 1 | + (−0.900 − 0.433i)3-s + (−0.900 + 0.433i)4-s + (1.45 + 0.702i)7-s + (0.623 + 0.781i)9-s + 12-s + (0.385 − 0.483i)13-s + (0.623 − 0.781i)16-s + (−0.556 + 0.268i)19-s + (−1.00 − 1.26i)21-s + (−0.900 + 0.433i)25-s + (−0.222 − 0.974i)27-s − 1.61·28-s + (0.360 + 1.57i)31-s + (−0.900 − 0.433i)36-s + (0.385 + 0.483i)37-s + ⋯ |
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.745−0.666i)Λ(1−s)
Λ(s)=(=(2523s/2ΓC(s)L(s)(0.745−0.666i)Λ(1−s)
Degree: |
2 |
Conductor: |
2523
= 3⋅292
|
Sign: |
0.745−0.666i
|
Analytic conductor: |
1.25914 |
Root analytic conductor: |
1.12211 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2523(2327,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2523, ( :0), 0.745−0.666i)
|
Particular Values
L(21) |
≈ |
0.8246255712 |
L(21) |
≈ |
0.8246255712 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.900+0.433i)T |
| 29 | 1 |
good | 2 | 1+(0.900−0.433i)T2 |
| 5 | 1+(0.900−0.433i)T2 |
| 7 | 1+(−1.45−0.702i)T+(0.623+0.781i)T2 |
| 11 | 1+(0.222+0.974i)T2 |
| 13 | 1+(−0.385+0.483i)T+(−0.222−0.974i)T2 |
| 17 | 1−T2 |
| 19 | 1+(0.556−0.268i)T+(0.623−0.781i)T2 |
| 23 | 1+(0.900+0.433i)T2 |
| 31 | 1+(−0.360−1.57i)T+(−0.900+0.433i)T2 |
| 37 | 1+(−0.385−0.483i)T+(−0.222+0.974i)T2 |
| 41 | 1−T2 |
| 43 | 1+(−0.360+1.57i)T+(−0.900−0.433i)T2 |
| 47 | 1+(0.222+0.974i)T2 |
| 53 | 1+(0.900−0.433i)T2 |
| 59 | 1−T2 |
| 61 | 1+(−1.45−0.702i)T+(0.623+0.781i)T2 |
| 67 | 1+(−0.385−0.483i)T+(−0.222+0.974i)T2 |
| 71 | 1+(0.222+0.974i)T2 |
| 73 | 1+(0.137−0.602i)T+(−0.900−0.433i)T2 |
| 79 | 1+(−0.385−0.483i)T+(−0.222+0.974i)T2 |
| 83 | 1+(−0.623+0.781i)T2 |
| 89 | 1+(0.900−0.433i)T2 |
| 97 | 1+(−1.45+0.702i)T+(0.623−0.781i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.915196549844056530390481070249, −8.347702571146648837073108232421, −7.82260068812345610508584919213, −6.96140059069370864131346708423, −5.80787460890999824735638659309, −5.29292267914781341713093294937, −4.64603121360270580670117956783, −3.74086485718717801968062371829, −2.29316375908271317754043981375, −1.18746750062128877200237639197,
0.77893374106820349585612958900, 1.89589849606511577362516958430, 3.86483197461043431239572689782, 4.36837053153204769597183802131, 4.90503272174198410642076775863, 5.80571678180759842041311837681, 6.45637479248285023736467774111, 7.62391340941950229014517278692, 8.221923093350793731580860654309, 9.146326981478220710890500363103