L(s) = 1 | + (0.675 + 0.219i)2-s + (1.44 − 1.05i)3-s + (−2.82 − 2.05i)4-s + (1.51 + 4.64i)5-s + (1.20 − 0.392i)6-s + (−5.17 + 7.12i)7-s + (−3.13 − 4.30i)8-s + (−1.79 + 5.51i)9-s + 3.47i·10-s + (−2.65 + 10.6i)11-s − 6.25·12-s + (7.38 + 2.40i)13-s + (−5.05 + 3.67i)14-s + (7.07 + 5.13i)15-s + (3.15 + 9.69i)16-s + (7.23 − 2.35i)17-s + ⋯ |
L(s) = 1 | + (0.337 + 0.109i)2-s + (0.482 − 0.350i)3-s + (−0.706 − 0.513i)4-s + (0.302 + 0.929i)5-s + (0.201 − 0.0654i)6-s + (−0.739 + 1.01i)7-s + (−0.391 − 0.538i)8-s + (−0.199 + 0.613i)9-s + 0.347i·10-s + (−0.240 + 0.970i)11-s − 0.520·12-s + (0.568 + 0.184i)13-s + (−0.361 + 0.262i)14-s + (0.471 + 0.342i)15-s + (0.196 + 0.606i)16-s + (0.425 − 0.138i)17-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(−0.0488−0.998i)Λ(3−s)
Λ(s)=(=(253s/2ΓC(s+1)L(s)(−0.0488−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
−0.0488−0.998i
|
Analytic conductor: |
6.89375 |
Root analytic conductor: |
2.62559 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(24,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :1), −0.0488−0.998i)
|
Particular Values
L(23) |
≈ |
0.990982+1.04061i |
L(21) |
≈ |
0.990982+1.04061i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(2.65−10.6i)T |
| 23 | 1+4.79T |
good | 2 | 1+(−0.675−0.219i)T+(3.23+2.35i)T2 |
| 3 | 1+(−1.44+1.05i)T+(2.78−8.55i)T2 |
| 5 | 1+(−1.51−4.64i)T+(−20.2+14.6i)T2 |
| 7 | 1+(5.17−7.12i)T+(−15.1−46.6i)T2 |
| 13 | 1+(−7.38−2.40i)T+(136.+99.3i)T2 |
| 17 | 1+(−7.23+2.35i)T+(233.−169.i)T2 |
| 19 | 1+(2.74+3.78i)T+(−111.+343.i)T2 |
| 29 | 1+(3.01−4.15i)T+(−259.−799.i)T2 |
| 31 | 1+(−1.25+3.86i)T+(−777.−564.i)T2 |
| 37 | 1+(12.0+8.76i)T+(423.+1.30e3i)T2 |
| 41 | 1+(10.7+14.7i)T+(−519.+1.59e3i)T2 |
| 43 | 1−10.7iT−1.84e3T2 |
| 47 | 1+(54.0−39.2i)T+(682.−2.10e3i)T2 |
| 53 | 1+(0.202−0.623i)T+(−2.27e3−1.65e3i)T2 |
| 59 | 1+(62.6+45.5i)T+(1.07e3+3.31e3i)T2 |
| 61 | 1+(−77.4+25.1i)T+(3.01e3−2.18e3i)T2 |
| 67 | 1−41.4T+4.48e3T2 |
| 71 | 1+(−23.6−72.8i)T+(−4.07e3+2.96e3i)T2 |
| 73 | 1+(3.57−4.91i)T+(−1.64e3−5.06e3i)T2 |
| 79 | 1+(−88.9−28.9i)T+(5.04e3+3.66e3i)T2 |
| 83 | 1+(−125.+40.8i)T+(5.57e3−4.04e3i)T2 |
| 89 | 1−57.8T+7.92e3T2 |
| 97 | 1+(−22.7+70.1i)T+(−7.61e3−5.53e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.40938490685175529860275938169, −10.99105120383017387188498784223, −10.00101857910464453079054377055, −9.265031321560848723585432851863, −8.222671016214993784066755271383, −6.89472219461797488333695240952, −6.00235559440981905045977742583, −4.94028907211232758773291241294, −3.30226194190774658881672090694, −2.13201398429845879038364548696,
0.64702534168029926299645752070, 3.27732921779551814231131949353, 3.86619173309545822987493891690, 5.16230634223610519060447231930, 6.34894647646015010485980645009, 7.981148689181903170247083593991, 8.726389262451708997130347608023, 9.478093761782610405203780863500, 10.43559662901108973110726146962, 11.80363062811481378076820668349