L(s) = 1 | + (−2.81 − 0.913i)2-s + (−3.21 + 2.33i)3-s + (3.83 + 2.78i)4-s + (1.38 + 4.25i)5-s + (11.1 − 3.62i)6-s + (3.16 − 4.35i)7-s + (−1.29 − 1.78i)8-s + (2.09 − 6.43i)9-s − 13.2i·10-s + (8.08 − 7.45i)11-s − 18.8·12-s + (−16.0 − 5.21i)13-s + (−12.8 + 9.36i)14-s + (−14.3 − 10.4i)15-s + (−3.85 − 11.8i)16-s + (15.0 − 4.89i)17-s + ⋯ |
L(s) = 1 | + (−1.40 − 0.456i)2-s + (−1.07 + 0.777i)3-s + (0.959 + 0.697i)4-s + (0.276 + 0.850i)5-s + (1.86 − 0.604i)6-s + (0.452 − 0.622i)7-s + (−0.162 − 0.223i)8-s + (0.232 − 0.714i)9-s − 1.32i·10-s + (0.735 − 0.677i)11-s − 1.57·12-s + (−1.23 − 0.400i)13-s + (−0.920 + 0.668i)14-s + (−0.957 − 0.695i)15-s + (−0.240 − 0.740i)16-s + (0.886 − 0.287i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.508 - 0.860i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 253 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.508 - 0.860i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.467343 + 0.266636i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.467343 + 0.266636i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + (-8.08 + 7.45i)T \) |
| 23 | \( 1 - 4.79T \) |
good | 2 | \( 1 + (2.81 + 0.913i)T + (3.23 + 2.35i)T^{2} \) |
| 3 | \( 1 + (3.21 - 2.33i)T + (2.78 - 8.55i)T^{2} \) |
| 5 | \( 1 + (-1.38 - 4.25i)T + (-20.2 + 14.6i)T^{2} \) |
| 7 | \( 1 + (-3.16 + 4.35i)T + (-15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (16.0 + 5.21i)T + (136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (-15.0 + 4.89i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (-18.5 - 25.5i)T + (-111. + 343. i)T^{2} \) |
| 29 | \( 1 + (-17.8 + 24.6i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (13.7 - 42.2i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (4.03 + 2.93i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (-41.3 - 56.9i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 - 54.5iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (9.04 - 6.57i)T + (682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (-6.48 + 19.9i)T + (-2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (59.2 + 43.0i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (-30.6 + 9.96i)T + (3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 + 66.0T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-22.6 - 69.6i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (77.8 - 107. i)T + (-1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (15.1 + 4.90i)T + (5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (-6.22 + 2.02i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 - 52.0T + 7.92e3T^{2} \) |
| 97 | \( 1 + (4.28 - 13.1i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46021629782829226934493668243, −10.81434696319182283295773789105, −10.01926377377896841967085093410, −9.695597444480865373741886799668, −8.123640782925085779124594521248, −7.26279753555382033255388512412, −5.94755902397906685090613647496, −4.75862780817747009544192560400, −3.05403378855627756868303237545, −1.06795162476902262614131638490,
0.67061805038389503287564807339, 1.81434037093056131838940782472, 4.82069852907004932613693612158, 5.76087191331044055662867717081, 7.03409717000178973070660370028, 7.50207359532486480994057459385, 8.994814772348613689354405105041, 9.325347569311016096878203730275, 10.57007814470436938282021650397, 11.80576841425591081172100608739