L(s) = 1 | + (−2.81 − 0.913i)2-s + (−3.21 + 2.33i)3-s + (3.83 + 2.78i)4-s + (1.38 + 4.25i)5-s + (11.1 − 3.62i)6-s + (3.16 − 4.35i)7-s + (−1.29 − 1.78i)8-s + (2.09 − 6.43i)9-s − 13.2i·10-s + (8.08 − 7.45i)11-s − 18.8·12-s + (−16.0 − 5.21i)13-s + (−12.8 + 9.36i)14-s + (−14.3 − 10.4i)15-s + (−3.85 − 11.8i)16-s + (15.0 − 4.89i)17-s + ⋯ |
L(s) = 1 | + (−1.40 − 0.456i)2-s + (−1.07 + 0.777i)3-s + (0.959 + 0.697i)4-s + (0.276 + 0.850i)5-s + (1.86 − 0.604i)6-s + (0.452 − 0.622i)7-s + (−0.162 − 0.223i)8-s + (0.232 − 0.714i)9-s − 1.32i·10-s + (0.735 − 0.677i)11-s − 1.57·12-s + (−1.23 − 0.400i)13-s + (−0.920 + 0.668i)14-s + (−0.957 − 0.695i)15-s + (−0.240 − 0.740i)16-s + (0.886 − 0.287i)17-s + ⋯ |
Λ(s)=(=(253s/2ΓC(s)L(s)(0.508−0.860i)Λ(3−s)
Λ(s)=(=(253s/2ΓC(s+1)L(s)(0.508−0.860i)Λ(1−s)
Degree: |
2 |
Conductor: |
253
= 11⋅23
|
Sign: |
0.508−0.860i
|
Analytic conductor: |
6.89375 |
Root analytic conductor: |
2.62559 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ253(24,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 253, ( :1), 0.508−0.860i)
|
Particular Values
L(23) |
≈ |
0.467343+0.266636i |
L(21) |
≈ |
0.467343+0.266636i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1+(−8.08+7.45i)T |
| 23 | 1−4.79T |
good | 2 | 1+(2.81+0.913i)T+(3.23+2.35i)T2 |
| 3 | 1+(3.21−2.33i)T+(2.78−8.55i)T2 |
| 5 | 1+(−1.38−4.25i)T+(−20.2+14.6i)T2 |
| 7 | 1+(−3.16+4.35i)T+(−15.1−46.6i)T2 |
| 13 | 1+(16.0+5.21i)T+(136.+99.3i)T2 |
| 17 | 1+(−15.0+4.89i)T+(233.−169.i)T2 |
| 19 | 1+(−18.5−25.5i)T+(−111.+343.i)T2 |
| 29 | 1+(−17.8+24.6i)T+(−259.−799.i)T2 |
| 31 | 1+(13.7−42.2i)T+(−777.−564.i)T2 |
| 37 | 1+(4.03+2.93i)T+(423.+1.30e3i)T2 |
| 41 | 1+(−41.3−56.9i)T+(−519.+1.59e3i)T2 |
| 43 | 1−54.5iT−1.84e3T2 |
| 47 | 1+(9.04−6.57i)T+(682.−2.10e3i)T2 |
| 53 | 1+(−6.48+19.9i)T+(−2.27e3−1.65e3i)T2 |
| 59 | 1+(59.2+43.0i)T+(1.07e3+3.31e3i)T2 |
| 61 | 1+(−30.6+9.96i)T+(3.01e3−2.18e3i)T2 |
| 67 | 1+66.0T+4.48e3T2 |
| 71 | 1+(−22.6−69.6i)T+(−4.07e3+2.96e3i)T2 |
| 73 | 1+(77.8−107.i)T+(−1.64e3−5.06e3i)T2 |
| 79 | 1+(15.1+4.90i)T+(5.04e3+3.66e3i)T2 |
| 83 | 1+(−6.22+2.02i)T+(5.57e3−4.04e3i)T2 |
| 89 | 1−52.0T+7.92e3T2 |
| 97 | 1+(4.28−13.1i)T+(−7.61e3−5.53e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.46021629782829226934493668243, −10.81434696319182283295773789105, −10.01926377377896841967085093410, −9.695597444480865373741886799668, −8.123640782925085779124594521248, −7.26279753555382033255388512412, −5.94755902397906685090613647496, −4.75862780817747009544192560400, −3.05403378855627756868303237545, −1.06795162476902262614131638490,
0.67061805038389503287564807339, 1.81434037093056131838940782472, 4.82069852907004932613693612158, 5.76087191331044055662867717081, 7.03409717000178973070660370028, 7.50207359532486480994057459385, 8.994814772348613689354405105041, 9.325347569311016096878203730275, 10.57007814470436938282021650397, 11.80576841425591081172100608739