L(s) = 1 | + 1.41·3-s + (0.707 − 0.707i)5-s + 1.00·9-s + (−0.707 + 0.707i)13-s + (1.00 − 1.00i)15-s − 1.41i·17-s + (0.707 − 0.707i)19-s − i·23-s − 29-s + (−0.707 + 0.707i)31-s + (1 + i)37-s + (−1.00 + 1.00i)39-s + i·43-s + (0.707 − 0.707i)45-s + (0.707 + 0.707i)47-s + ⋯ |
L(s) = 1 | + 1.41·3-s + (0.707 − 0.707i)5-s + 1.00·9-s + (−0.707 + 0.707i)13-s + (1.00 − 1.00i)15-s − 1.41i·17-s + (0.707 − 0.707i)19-s − i·23-s − 29-s + (−0.707 + 0.707i)31-s + (1 + i)37-s + (−1.00 + 1.00i)39-s + i·43-s + (0.707 − 0.707i)45-s + (0.707 + 0.707i)47-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(0.881+0.471i)Λ(1−s)
Λ(s)=(=(2548s/2ΓC(s)L(s)(0.881+0.471i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
0.881+0.471i
|
Analytic conductor: |
1.27161 |
Root analytic conductor: |
1.12766 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(785,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :0), 0.881+0.471i)
|
Particular Values
L(21) |
≈ |
2.117169872 |
L(21) |
≈ |
2.117169872 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1+(0.707−0.707i)T |
good | 3 | 1−1.41T+T2 |
| 5 | 1+(−0.707+0.707i)T−iT2 |
| 11 | 1+iT2 |
| 17 | 1+1.41iT−T2 |
| 19 | 1+(−0.707+0.707i)T−iT2 |
| 23 | 1+iT−T2 |
| 29 | 1+T+T2 |
| 31 | 1+(0.707−0.707i)T−iT2 |
| 37 | 1+(−1−i)T+iT2 |
| 41 | 1−iT2 |
| 43 | 1−iT−T2 |
| 47 | 1+(−0.707−0.707i)T+iT2 |
| 53 | 1+T+T2 |
| 59 | 1+(−1.41−1.41i)T+iT2 |
| 61 | 1−1.41T+T2 |
| 67 | 1+(1−i)T−iT2 |
| 71 | 1+(1−i)T−iT2 |
| 73 | 1+(0.707+0.707i)T+iT2 |
| 79 | 1+T+T2 |
| 83 | 1+(−0.707+0.707i)T−iT2 |
| 89 | 1+(0.707+0.707i)T+iT2 |
| 97 | 1+(−0.707+0.707i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.036449901136071275297841152563, −8.540076325582319403604566526151, −7.43292022374580725509501548629, −7.11203608918565685806731698020, −5.84463365836190152423035512698, −4.93849624922076652841012025673, −4.28816444566749275919479489651, −2.99989622638371912573610358766, −2.47852947228702082011571428318, −1.37124271307593974350886651711,
1.81678024406073891736278018308, 2.41530868358777968719648294845, 3.43487267265167992252872095127, 3.92624054978879261851738218880, 5.45227604154539325389210406615, 5.96000962558609064104567865223, 7.13260258721512848625763794384, 7.71436284554181993969117046501, 8.293709979583084834011616115125, 9.259595317374064530416293645582