L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.900 + 0.433i)7-s + (0.623 − 0.781i)8-s + (−0.222 − 0.974i)9-s + (−0.277 + 1.21i)11-s + (−0.222 + 0.974i)13-s + (−0.222 − 0.974i)14-s + (0.623 + 0.781i)16-s + (0.400 − 0.193i)17-s + 18-s − 0.445·19-s + (−1.12 − 0.541i)22-s + (−0.222 − 0.974i)25-s + (−0.900 − 0.433i)26-s + ⋯ |
L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.900 + 0.433i)7-s + (0.623 − 0.781i)8-s + (−0.222 − 0.974i)9-s + (−0.277 + 1.21i)11-s + (−0.222 + 0.974i)13-s + (−0.222 − 0.974i)14-s + (0.623 + 0.781i)16-s + (0.400 − 0.193i)17-s + 18-s − 0.445·19-s + (−1.12 − 0.541i)22-s + (−0.222 − 0.974i)25-s + (−0.900 − 0.433i)26-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(−0.761+0.648i)Λ(1−s)
Λ(s)=(=(2548s/2ΓC(s)L(s)(−0.761+0.648i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
−0.761+0.648i
|
Analytic conductor: |
1.27161 |
Root analytic conductor: |
1.12766 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(1975,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :0), −0.761+0.648i)
|
Particular Values
L(21) |
≈ |
0.2218406147 |
L(21) |
≈ |
0.2218406147 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.222−0.974i)T |
| 7 | 1+(0.900−0.433i)T |
| 13 | 1+(0.222−0.974i)T |
good | 3 | 1+(0.222+0.974i)T2 |
| 5 | 1+(0.222+0.974i)T2 |
| 11 | 1+(0.277−1.21i)T+(−0.900−0.433i)T2 |
| 17 | 1+(−0.400+0.193i)T+(0.623−0.781i)T2 |
| 19 | 1+0.445T+T2 |
| 23 | 1+(−0.623−0.781i)T2 |
| 29 | 1+(1.12−0.541i)T+(0.623−0.781i)T2 |
| 31 | 1+0.445T+T2 |
| 37 | 1+(−0.623+0.781i)T2 |
| 41 | 1+(0.222+0.974i)T2 |
| 43 | 1+(0.222−0.974i)T2 |
| 47 | 1+(0.277−1.21i)T+(−0.900−0.433i)T2 |
| 53 | 1+(1.80+0.867i)T+(0.623+0.781i)T2 |
| 59 | 1+(1.12+1.40i)T+(−0.222+0.974i)T2 |
| 61 | 1+(1.80−0.867i)T+(0.623−0.781i)T2 |
| 67 | 1+1.80T+T2 |
| 71 | 1+(−0.400−0.193i)T+(0.623+0.781i)T2 |
| 73 | 1+(0.900−0.433i)T2 |
| 79 | 1−T2 |
| 83 | 1+(−0.400−1.75i)T+(−0.900+0.433i)T2 |
| 89 | 1+(0.900−0.433i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.420712872276977990395781650921, −8.954794250233909157658867582212, −7.896241634532518845785044772696, −7.17035030250565119061430040107, −6.46535152100749143087983885134, −5.99981446656014712208061861843, −4.92604876084065933709630126148, −4.17611773901845600939195728131, −3.17939759200446260153946576703, −1.79318805726508741604400361597,
0.15215382553788516007572386100, 1.70657103113020274156470119016, 3.00182115033747969205920532618, 3.34774872814815561739776879039, 4.46756231848982927271263747369, 5.48281603889987292930697715989, 6.03751925282809246673194393041, 7.57491358017076586781980085961, 7.79644565682351171793552349572, 8.807601058038574073776651605736