L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.900 + 0.433i)7-s + (0.623 − 0.781i)8-s + (−0.222 − 0.974i)9-s + (−0.277 + 1.21i)11-s + (−0.222 + 0.974i)13-s + (−0.222 − 0.974i)14-s + (0.623 + 0.781i)16-s + (0.400 − 0.193i)17-s + 18-s − 0.445·19-s + (−1.12 − 0.541i)22-s + (−0.222 − 0.974i)25-s + (−0.900 − 0.433i)26-s + ⋯ |
L(s) = 1 | + (−0.222 + 0.974i)2-s + (−0.900 − 0.433i)4-s + (−0.900 + 0.433i)7-s + (0.623 − 0.781i)8-s + (−0.222 − 0.974i)9-s + (−0.277 + 1.21i)11-s + (−0.222 + 0.974i)13-s + (−0.222 − 0.974i)14-s + (0.623 + 0.781i)16-s + (0.400 − 0.193i)17-s + 18-s − 0.445·19-s + (−1.12 − 0.541i)22-s + (−0.222 − 0.974i)25-s + (−0.900 − 0.433i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.761 + 0.648i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.761 + 0.648i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2218406147\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2218406147\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.222 - 0.974i)T \) |
| 7 | \( 1 + (0.900 - 0.433i)T \) |
| 13 | \( 1 + (0.222 - 0.974i)T \) |
good | 3 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 5 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 11 | \( 1 + (0.277 - 1.21i)T + (-0.900 - 0.433i)T^{2} \) |
| 17 | \( 1 + (-0.400 + 0.193i)T + (0.623 - 0.781i)T^{2} \) |
| 19 | \( 1 + 0.445T + T^{2} \) |
| 23 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 29 | \( 1 + (1.12 - 0.541i)T + (0.623 - 0.781i)T^{2} \) |
| 31 | \( 1 + 0.445T + T^{2} \) |
| 37 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 41 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 43 | \( 1 + (0.222 - 0.974i)T^{2} \) |
| 47 | \( 1 + (0.277 - 1.21i)T + (-0.900 - 0.433i)T^{2} \) |
| 53 | \( 1 + (1.80 + 0.867i)T + (0.623 + 0.781i)T^{2} \) |
| 59 | \( 1 + (1.12 + 1.40i)T + (-0.222 + 0.974i)T^{2} \) |
| 61 | \( 1 + (1.80 - 0.867i)T + (0.623 - 0.781i)T^{2} \) |
| 67 | \( 1 + 1.80T + T^{2} \) |
| 71 | \( 1 + (-0.400 - 0.193i)T + (0.623 + 0.781i)T^{2} \) |
| 73 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (-0.400 - 1.75i)T + (-0.900 + 0.433i)T^{2} \) |
| 89 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.420712872276977990395781650921, −8.954794250233909157658867582212, −7.896241634532518845785044772696, −7.17035030250565119061430040107, −6.46535152100749143087983885134, −5.99981446656014712208061861843, −4.92604876084065933709630126148, −4.17611773901845600939195728131, −3.17939759200446260153946576703, −1.79318805726508741604400361597,
0.15215382553788516007572386100, 1.70657103113020274156470119016, 3.00182115033747969205920532618, 3.34774872814815561739776879039, 4.46756231848982927271263747369, 5.48281603889987292930697715989, 6.03751925282809246673194393041, 7.57491358017076586781980085961, 7.79644565682351171793552349572, 8.807601058038574073776651605736