L(s) = 1 | + (0.826 + 0.563i)2-s + (0.365 + 0.930i)4-s + (0.365 − 0.930i)7-s + (−0.222 + 0.974i)8-s + (0.0747 + 0.997i)9-s + (−0.109 + 1.46i)11-s + (−0.900 + 0.433i)13-s + (0.826 − 0.563i)14-s + (−0.733 + 0.680i)16-s + (−1.63 + 0.246i)17-s + (−0.5 + 0.866i)18-s + (−0.0747 − 0.129i)19-s + (−0.914 + 1.14i)22-s + (0.826 − 0.563i)25-s + (−0.988 − 0.149i)26-s + ⋯ |
L(s) = 1 | + (0.826 + 0.563i)2-s + (0.365 + 0.930i)4-s + (0.365 − 0.930i)7-s + (−0.222 + 0.974i)8-s + (0.0747 + 0.997i)9-s + (−0.109 + 1.46i)11-s + (−0.900 + 0.433i)13-s + (0.826 − 0.563i)14-s + (−0.733 + 0.680i)16-s + (−1.63 + 0.246i)17-s + (−0.5 + 0.866i)18-s + (−0.0747 − 0.129i)19-s + (−0.914 + 1.14i)22-s + (0.826 − 0.563i)25-s + (−0.988 − 0.149i)26-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(−0.304−0.952i)Λ(1−s)
Λ(s)=(=(2548s/2ΓC(s)L(s)(−0.304−0.952i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
−0.304−0.952i
|
Analytic conductor: |
1.27161 |
Root analytic conductor: |
1.12766 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(935,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :0), −0.304−0.952i)
|
Particular Values
L(21) |
≈ |
1.805608438 |
L(21) |
≈ |
1.805608438 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.826−0.563i)T |
| 7 | 1+(−0.365+0.930i)T |
| 13 | 1+(0.900−0.433i)T |
good | 3 | 1+(−0.0747−0.997i)T2 |
| 5 | 1+(−0.826+0.563i)T2 |
| 11 | 1+(0.109−1.46i)T+(−0.988−0.149i)T2 |
| 17 | 1+(1.63−0.246i)T+(0.955−0.294i)T2 |
| 19 | 1+(0.0747+0.129i)T+(−0.5+0.866i)T2 |
| 23 | 1+(−0.955−0.294i)T2 |
| 29 | 1+(−1.19−1.49i)T+(−0.222+0.974i)T2 |
| 31 | 1+(−0.900+1.56i)T+(−0.5−0.866i)T2 |
| 37 | 1+(0.733+0.680i)T2 |
| 41 | 1+(0.900+0.433i)T2 |
| 43 | 1+(0.900−0.433i)T2 |
| 47 | 1+(−1.57−1.07i)T+(0.365+0.930i)T2 |
| 53 | 1+(0.365+0.930i)T+(−0.733+0.680i)T2 |
| 59 | 1+(−0.698−0.215i)T+(0.826+0.563i)T2 |
| 61 | 1+(0.365−0.930i)T+(−0.733−0.680i)T2 |
| 67 | 1+(−0.988+1.71i)T+(−0.5−0.866i)T2 |
| 71 | 1+(−1.03+1.29i)T+(−0.222−0.974i)T2 |
| 73 | 1+(−0.365+0.930i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(1.12+0.541i)T+(0.623+0.781i)T2 |
| 89 | 1+(0.988−0.149i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.175822589085429128347522025918, −8.252967929520591750764922958546, −7.56743630979825643593403302146, −6.97530076446518506643058897335, −6.46474030177280384342597396615, −5.03447121938452896690313881645, −4.60638695759080872027746352034, −4.20367580607025986474439214197, −2.63556677305568919865147736302, −1.98553367067005387598552693473,
0.900459524664371969011678514451, 2.46457111160381990985812761737, 2.93425621707910502329410842077, 4.02870484551053867130170058221, 4.91696918094991722771624761997, 5.62097103889545794188387410877, 6.39109029100605288299766452409, 6.97721115096453849810479962967, 8.403932984561601355059837127270, 8.825308168127772186372812203347