L(s) = 1 | + (0.826 + 0.563i)2-s + (0.365 + 0.930i)4-s + (0.365 − 0.930i)7-s + (−0.222 + 0.974i)8-s + (0.0747 + 0.997i)9-s + (−0.109 + 1.46i)11-s + (−0.900 + 0.433i)13-s + (0.826 − 0.563i)14-s + (−0.733 + 0.680i)16-s + (−1.63 + 0.246i)17-s + (−0.5 + 0.866i)18-s + (−0.0747 − 0.129i)19-s + (−0.914 + 1.14i)22-s + (0.826 − 0.563i)25-s + (−0.988 − 0.149i)26-s + ⋯ |
L(s) = 1 | + (0.826 + 0.563i)2-s + (0.365 + 0.930i)4-s + (0.365 − 0.930i)7-s + (−0.222 + 0.974i)8-s + (0.0747 + 0.997i)9-s + (−0.109 + 1.46i)11-s + (−0.900 + 0.433i)13-s + (0.826 − 0.563i)14-s + (−0.733 + 0.680i)16-s + (−1.63 + 0.246i)17-s + (−0.5 + 0.866i)18-s + (−0.0747 − 0.129i)19-s + (−0.914 + 1.14i)22-s + (0.826 − 0.563i)25-s + (−0.988 − 0.149i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.304 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.304 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.805608438\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.805608438\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.826 - 0.563i)T \) |
| 7 | \( 1 + (-0.365 + 0.930i)T \) |
| 13 | \( 1 + (0.900 - 0.433i)T \) |
good | 3 | \( 1 + (-0.0747 - 0.997i)T^{2} \) |
| 5 | \( 1 + (-0.826 + 0.563i)T^{2} \) |
| 11 | \( 1 + (0.109 - 1.46i)T + (-0.988 - 0.149i)T^{2} \) |
| 17 | \( 1 + (1.63 - 0.246i)T + (0.955 - 0.294i)T^{2} \) |
| 19 | \( 1 + (0.0747 + 0.129i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.955 - 0.294i)T^{2} \) |
| 29 | \( 1 + (-1.19 - 1.49i)T + (-0.222 + 0.974i)T^{2} \) |
| 31 | \( 1 + (-0.900 + 1.56i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.733 + 0.680i)T^{2} \) |
| 41 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 43 | \( 1 + (0.900 - 0.433i)T^{2} \) |
| 47 | \( 1 + (-1.57 - 1.07i)T + (0.365 + 0.930i)T^{2} \) |
| 53 | \( 1 + (0.365 + 0.930i)T + (-0.733 + 0.680i)T^{2} \) |
| 59 | \( 1 + (-0.698 - 0.215i)T + (0.826 + 0.563i)T^{2} \) |
| 61 | \( 1 + (0.365 - 0.930i)T + (-0.733 - 0.680i)T^{2} \) |
| 67 | \( 1 + (-0.988 + 1.71i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-1.03 + 1.29i)T + (-0.222 - 0.974i)T^{2} \) |
| 73 | \( 1 + (-0.365 + 0.930i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (1.12 + 0.541i)T + (0.623 + 0.781i)T^{2} \) |
| 89 | \( 1 + (0.988 - 0.149i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.175822589085429128347522025918, −8.252967929520591750764922958546, −7.56743630979825643593403302146, −6.97530076446518506643058897335, −6.46474030177280384342597396615, −5.03447121938452896690313881645, −4.60638695759080872027746352034, −4.20367580607025986474439214197, −2.63556677305568919865147736302, −1.98553367067005387598552693473,
0.900459524664371969011678514451, 2.46457111160381990985812761737, 2.93425621707910502329410842077, 4.02870484551053867130170058221, 4.91696918094991722771624761997, 5.62097103889545794188387410877, 6.39109029100605288299766452409, 6.97721115096453849810479962967, 8.403932984561601355059837127270, 8.825308168127772186372812203347