L(s) = 1 | + (−0.646 + 1.12i)3-s + (2.42 − 1.39i)5-s + (0.663 + 1.14i)9-s + (−0.894 − 0.516i)11-s + (1.79 + 3.12i)13-s + 3.62i·15-s + (−3.47 + 6.02i)17-s + (2.19 − 1.26i)19-s + (1.91 + 3.31i)23-s + (1.41 − 2.45i)25-s − 5.59·27-s − 5.10·29-s + (−3.28 − 1.89i)31-s + (1.15 − 0.668i)33-s + (−5.37 + 3.10i)37-s + ⋯ |
L(s) = 1 | + (−0.373 + 0.646i)3-s + (1.08 − 0.625i)5-s + (0.221 + 0.382i)9-s + (−0.269 − 0.155i)11-s + (0.498 + 0.866i)13-s + 0.934i·15-s + (−0.843 + 1.46i)17-s + (0.504 − 0.291i)19-s + (0.399 + 0.691i)23-s + (0.283 − 0.490i)25-s − 1.07·27-s − 0.947·29-s + (−0.589 − 0.340i)31-s + (0.201 − 0.116i)33-s + (−0.883 + 0.510i)37-s + ⋯ |
Λ(s)=(=(2548s/2ΓC(s)L(s)(−0.265−0.964i)Λ(2−s)
Λ(s)=(=(2548s/2ΓC(s+1/2)L(s)(−0.265−0.964i)Λ(1−s)
Degree: |
2 |
Conductor: |
2548
= 22⋅72⋅13
|
Sign: |
−0.265−0.964i
|
Analytic conductor: |
20.3458 |
Root analytic conductor: |
4.51064 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2548(753,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2548, ( :1/2), −0.265−0.964i)
|
Particular Values
L(1) |
≈ |
1.631345942 |
L(21) |
≈ |
1.631345942 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 13 | 1+(−1.79−3.12i)T |
good | 3 | 1+(0.646−1.12i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−2.42+1.39i)T+(2.5−4.33i)T2 |
| 11 | 1+(0.894+0.516i)T+(5.5+9.52i)T2 |
| 17 | 1+(3.47−6.02i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.19+1.26i)T+(9.5−16.4i)T2 |
| 23 | 1+(−1.91−3.31i)T+(−11.5+19.9i)T2 |
| 29 | 1+5.10T+29T2 |
| 31 | 1+(3.28+1.89i)T+(15.5+26.8i)T2 |
| 37 | 1+(5.37−3.10i)T+(18.5−32.0i)T2 |
| 41 | 1+0.990iT−41T2 |
| 43 | 1−0.560T+43T2 |
| 47 | 1+(−6.22+3.59i)T+(23.5−40.7i)T2 |
| 53 | 1+(0.589−1.02i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−10.3−5.96i)T+(29.5+51.0i)T2 |
| 61 | 1+(−6.92−11.9i)T+(−30.5+52.8i)T2 |
| 67 | 1+(11.9+6.89i)T+(33.5+58.0i)T2 |
| 71 | 1−3.80iT−71T2 |
| 73 | 1+(−2.76−1.59i)T+(36.5+63.2i)T2 |
| 79 | 1+(3.66+6.35i)T+(−39.5+68.4i)T2 |
| 83 | 1−16.6iT−83T2 |
| 89 | 1+(−10.3+5.94i)T+(44.5−77.0i)T2 |
| 97 | 1−8.60iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.078285914610475076700582186403, −8.717432002620776791420848986587, −7.58122720920630288941467461571, −6.70251679431864288281456880162, −5.68782123378028480119407910179, −5.41849699199180869750751303693, −4.39591763131123108437421313211, −3.72156410900588993217823825890, −2.17956309832178880107563434532, −1.46681555373175937534649874508,
0.55285574257926996945556979252, 1.82227211736056268478490712343, 2.69515707420621254601574439080, 3.66859753443529566543017811438, 5.02142859601844271036803068104, 5.68566768357019661662208232006, 6.41268858195890665448981243316, 7.05598536639200086786370392464, 7.62945241813893774154822081920, 8.817465223685678971461965385490