Properties

Label 2-25480-1.1-c1-0-4
Degree $2$
Conductor $25480$
Sign $1$
Analytic cond. $203.458$
Root an. cond. $14.2638$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5-s + 6·9-s + 5·11-s − 13-s + 3·15-s + 8·17-s − 4·19-s − 23-s + 25-s − 9·27-s − 6·29-s − 31-s − 15·33-s + 7·37-s + 3·39-s + 7·41-s + 6·43-s − 6·45-s + 3·47-s − 24·51-s + 6·53-s − 5·55-s + 12·57-s + 5·61-s + 65-s − 15·67-s + ⋯
L(s)  = 1  − 1.73·3-s − 0.447·5-s + 2·9-s + 1.50·11-s − 0.277·13-s + 0.774·15-s + 1.94·17-s − 0.917·19-s − 0.208·23-s + 1/5·25-s − 1.73·27-s − 1.11·29-s − 0.179·31-s − 2.61·33-s + 1.15·37-s + 0.480·39-s + 1.09·41-s + 0.914·43-s − 0.894·45-s + 0.437·47-s − 3.36·51-s + 0.824·53-s − 0.674·55-s + 1.58·57-s + 0.640·61-s + 0.124·65-s − 1.83·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25480\)    =    \(2^{3} \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(203.458\)
Root analytic conductor: \(14.2638\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 25480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.300957810\)
\(L(\frac12)\) \(\approx\) \(1.300957810\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good3 \( 1 + p T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 7 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 5 T + p T^{2} \)
67 \( 1 + 15 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + T + p T^{2} \)
79 \( 1 - 17 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.34560039139475, −14.80944443264359, −14.47684804199936, −13.73153738689180, −12.83003065502844, −12.49052188078403, −12.03005216402508, −11.65597082743532, −11.05870452236723, −10.68319293168274, −9.935758437326993, −9.508437285914628, −8.861661415138790, −7.905241359633777, −7.422242266506847, −6.884841829004096, −6.128722025652305, −5.844935035818086, −5.246959929712909, −4.309615343388906, −4.103481246157634, −3.278143656863629, −2.047668506315882, −1.122855135949429, −0.6126373728720444, 0.6126373728720444, 1.122855135949429, 2.047668506315882, 3.278143656863629, 4.103481246157634, 4.309615343388906, 5.246959929712909, 5.844935035818086, 6.128722025652305, 6.884841829004096, 7.422242266506847, 7.905241359633777, 8.861661415138790, 9.508437285914628, 9.935758437326993, 10.68319293168274, 11.05870452236723, 11.65597082743532, 12.03005216402508, 12.49052188078403, 12.83003065502844, 13.73153738689180, 14.47684804199936, 14.80944443264359, 15.34560039139475

Graph of the $Z$-function along the critical line