Properties

Label 2-2550-1.1-c1-0-1
Degree $2$
Conductor $2550$
Sign $1$
Analytic cond. $20.3618$
Root an. cond. $4.51241$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 3.37·7-s − 8-s + 9-s − 1.37·11-s − 12-s − 2·13-s + 3.37·14-s + 16-s + 17-s − 18-s + 3.37·19-s + 3.37·21-s + 1.37·22-s − 4.37·23-s + 24-s + 2·26-s − 27-s − 3.37·28-s − 2.74·29-s − 8.11·31-s − 32-s + 1.37·33-s − 34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.408·6-s − 1.27·7-s − 0.353·8-s + 0.333·9-s − 0.413·11-s − 0.288·12-s − 0.554·13-s + 0.901·14-s + 0.250·16-s + 0.242·17-s − 0.235·18-s + 0.773·19-s + 0.735·21-s + 0.292·22-s − 0.911·23-s + 0.204·24-s + 0.392·26-s − 0.192·27-s − 0.637·28-s − 0.509·29-s − 1.45·31-s − 0.176·32-s + 0.238·33-s − 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(20.3618\)
Root analytic conductor: \(4.51241\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5354420449\)
\(L(\frac12)\) \(\approx\) \(0.5354420449\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
17 \( 1 - T \)
good7 \( 1 + 3.37T + 7T^{2} \)
11 \( 1 + 1.37T + 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
19 \( 1 - 3.37T + 19T^{2} \)
23 \( 1 + 4.37T + 23T^{2} \)
29 \( 1 + 2.74T + 29T^{2} \)
31 \( 1 + 8.11T + 31T^{2} \)
37 \( 1 - T + 37T^{2} \)
41 \( 1 - 4.37T + 41T^{2} \)
43 \( 1 + 9.37T + 43T^{2} \)
47 \( 1 - 7.37T + 47T^{2} \)
53 \( 1 - 5.74T + 53T^{2} \)
59 \( 1 + 7.11T + 59T^{2} \)
61 \( 1 - 9.11T + 61T^{2} \)
67 \( 1 - 5.37T + 67T^{2} \)
71 \( 1 - 4.37T + 71T^{2} \)
73 \( 1 + 8T + 73T^{2} \)
79 \( 1 - 6.11T + 79T^{2} \)
83 \( 1 - 4.37T + 83T^{2} \)
89 \( 1 - 8.74T + 89T^{2} \)
97 \( 1 - 1.25T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.160083140834387719937769567555, −8.047261086459208850021784057155, −7.33669877379976829630364242939, −6.72788400209651612664774457365, −5.85156969762441601096339750851, −5.27667623664469658032907857239, −3.95164368561694314257175396845, −3.08624244127148540310764745415, −1.99609609975692426308072017560, −0.50573883662229611494273106057, 0.50573883662229611494273106057, 1.99609609975692426308072017560, 3.08624244127148540310764745415, 3.95164368561694314257175396845, 5.27667623664469658032907857239, 5.85156969762441601096339750851, 6.72788400209651612664774457365, 7.33669877379976829630364242939, 8.047261086459208850021784057155, 9.160083140834387719937769567555

Graph of the $Z$-function along the critical line