Properties

Label 2-2550-1.1-c1-0-14
Degree $2$
Conductor $2550$
Sign $1$
Analytic cond. $20.3618$
Root an. cond. $4.51241$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s + 4·11-s + 12-s + 2·13-s + 16-s − 17-s − 18-s + 4·19-s − 4·22-s − 24-s − 2·26-s + 27-s − 2·29-s + 8·31-s − 32-s + 4·33-s + 34-s + 36-s − 6·37-s − 4·38-s + 2·39-s − 6·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 1.20·11-s + 0.288·12-s + 0.554·13-s + 1/4·16-s − 0.242·17-s − 0.235·18-s + 0.917·19-s − 0.852·22-s − 0.204·24-s − 0.392·26-s + 0.192·27-s − 0.371·29-s + 1.43·31-s − 0.176·32-s + 0.696·33-s + 0.171·34-s + 1/6·36-s − 0.986·37-s − 0.648·38-s + 0.320·39-s − 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(20.3618\)
Root analytic conductor: \(4.51241\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.861291521\)
\(L(\frac12)\) \(\approx\) \(1.861291521\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.891511613917682416170599280455, −8.310462568854645808738516053588, −7.48010619200380663499134996167, −6.73690075819311214031311678822, −6.08439557059290044397198605751, −4.92646119617734323831892460778, −3.85183185671284510497638778861, −3.13544879646318674799993075010, −1.94324442746163824191174281871, −0.993709209615856864448811822787, 0.993709209615856864448811822787, 1.94324442746163824191174281871, 3.13544879646318674799993075010, 3.85183185671284510497638778861, 4.92646119617734323831892460778, 6.08439557059290044397198605751, 6.73690075819311214031311678822, 7.48010619200380663499134996167, 8.310462568854645808738516053588, 8.891511613917682416170599280455

Graph of the $Z$-function along the critical line