L(s) = 1 | + 2-s − 3-s + 4-s − 6-s − 4·7-s + 8-s + 9-s − 2·11-s − 12-s + 4·13-s − 4·14-s + 16-s − 17-s + 18-s + 4·19-s + 4·21-s − 2·22-s − 24-s + 4·26-s − 27-s − 4·28-s + 32-s + 2·33-s − 34-s + 36-s − 6·37-s + 4·38-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s − 0.603·11-s − 0.288·12-s + 1.10·13-s − 1.06·14-s + 1/4·16-s − 0.242·17-s + 0.235·18-s + 0.917·19-s + 0.872·21-s − 0.426·22-s − 0.204·24-s + 0.784·26-s − 0.192·27-s − 0.755·28-s + 0.176·32-s + 0.348·33-s − 0.171·34-s + 1/6·36-s − 0.986·37-s + 0.648·38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 17 | \( 1 + T \) |
good | 7 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 + 2 T + p T^{2} \) |
| 13 | \( 1 - 4 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 + 4 T + p T^{2} \) |
| 43 | \( 1 + 10 T + p T^{2} \) |
| 47 | \( 1 + 12 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + 6 T + p T^{2} \) |
| 67 | \( 1 + 14 T + p T^{2} \) |
| 71 | \( 1 + 14 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 - 12 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.501617764572381684830588461072, −7.50315283333215560233593830904, −6.66612231625331509029095061707, −6.21612384628072299493580737746, −5.44893331262879528454826998080, −4.63529343098491210977978144048, −3.45496340546058569945408343373, −3.10687990949140092232881938887, −1.58387499863515830257144857303, 0,
1.58387499863515830257144857303, 3.10687990949140092232881938887, 3.45496340546058569945408343373, 4.63529343098491210977978144048, 5.44893331262879528454826998080, 6.21612384628072299493580737746, 6.66612231625331509029095061707, 7.50315283333215560233593830904, 8.501617764572381684830588461072