Properties

Label 2-2550-1.1-c1-0-45
Degree $2$
Conductor $2550$
Sign $-1$
Analytic cond. $20.3618$
Root an. cond. $4.51241$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 7-s + 8-s + 9-s − 3·11-s − 12-s + 4·13-s − 14-s + 16-s − 17-s + 18-s − 5·19-s + 21-s − 3·22-s − 8·23-s − 24-s + 4·26-s − 27-s − 28-s − 4·29-s − 3·31-s + 32-s + 3·33-s − 34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.904·11-s − 0.288·12-s + 1.10·13-s − 0.267·14-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 1.14·19-s + 0.218·21-s − 0.639·22-s − 1.66·23-s − 0.204·24-s + 0.784·26-s − 0.192·27-s − 0.188·28-s − 0.742·29-s − 0.538·31-s + 0.176·32-s + 0.522·33-s − 0.171·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(20.3618\)
Root analytic conductor: \(4.51241\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 + T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 + 7 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 11 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 15 T + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.328679747447743988696308911741, −7.70514363062754001760074818196, −6.70805793765460903024093009589, −6.01105343681128848375965087529, −5.59357704065219692752888750061, −4.42415495348840661004046299825, −3.89086747195596752872647341737, −2.74556657861042306546288376856, −1.69697211485226681614066053159, 0, 1.69697211485226681614066053159, 2.74556657861042306546288376856, 3.89086747195596752872647341737, 4.42415495348840661004046299825, 5.59357704065219692752888750061, 6.01105343681128848375965087529, 6.70805793765460903024093009589, 7.70514363062754001760074818196, 8.328679747447743988696308911741

Graph of the $Z$-function along the critical line