L(s) = 1 | + 2-s − 3-s + 4-s − 6-s + 2.44·7-s + 8-s + 9-s − 4.89·11-s − 12-s − 6·13-s + 2.44·14-s + 16-s − 17-s + 18-s + 6.89·19-s − 2.44·21-s − 4.89·22-s − 6.44·23-s − 24-s − 6·26-s − 27-s + 2.44·28-s − 9.34·29-s − 6.44·31-s + 32-s + 4.89·33-s − 34-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.408·6-s + 0.925·7-s + 0.353·8-s + 0.333·9-s − 1.47·11-s − 0.288·12-s − 1.66·13-s + 0.654·14-s + 0.250·16-s − 0.242·17-s + 0.235·18-s + 1.58·19-s − 0.534·21-s − 1.04·22-s − 1.34·23-s − 0.204·24-s − 1.17·26-s − 0.192·27-s + 0.462·28-s − 1.73·29-s − 1.15·31-s + 0.176·32-s + 0.852·33-s − 0.171·34-s + ⋯ |
Λ(s)=(=(2550s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2550s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 5 | 1 |
| 17 | 1+T |
good | 7 | 1−2.44T+7T2 |
| 11 | 1+4.89T+11T2 |
| 13 | 1+6T+13T2 |
| 19 | 1−6.89T+19T2 |
| 23 | 1+6.44T+23T2 |
| 29 | 1+9.34T+29T2 |
| 31 | 1+6.44T+31T2 |
| 37 | 1−0.449T+37T2 |
| 41 | 1+1.10T+41T2 |
| 43 | 1−2.89T+43T2 |
| 47 | 1+4.89T+47T2 |
| 53 | 1−1.10T+53T2 |
| 59 | 1−5.79T+59T2 |
| 61 | 1−13.3T+61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1−2.44T+71T2 |
| 73 | 1+14.8T+73T2 |
| 79 | 1+1.55T+79T2 |
| 83 | 1+2.89T+83T2 |
| 89 | 1+1.79T+89T2 |
| 97 | 1−3.79T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.206315397634574447902406415734, −7.45397257341482684004048396476, −7.24214182222067515602782235079, −5.78841642242224113593090383967, −5.30243407290834490264870357348, −4.83414082823285989631889017844, −3.80873989216357019006401529082, −2.60833362751373309240544519149, −1.79684396230397726346931956942, 0,
1.79684396230397726346931956942, 2.60833362751373309240544519149, 3.80873989216357019006401529082, 4.83414082823285989631889017844, 5.30243407290834490264870357348, 5.78841642242224113593090383967, 7.24214182222067515602782235079, 7.45397257341482684004048396476, 8.206315397634574447902406415734