L(s) = 1 | + 2-s − 3-s + 4-s − 6-s − 4·7-s + 8-s + 9-s + 2·11-s − 12-s − 2·13-s − 4·14-s + 16-s + 17-s + 18-s + 8·19-s + 4·21-s + 2·22-s − 23-s − 24-s − 2·26-s − 27-s − 4·28-s − 4·29-s − 2·31-s + 32-s − 2·33-s + 34-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.603·11-s − 0.288·12-s − 0.554·13-s − 1.06·14-s + 1/4·16-s + 0.242·17-s + 0.235·18-s + 1.83·19-s + 0.872·21-s + 0.426·22-s − 0.208·23-s − 0.204·24-s − 0.392·26-s − 0.192·27-s − 0.755·28-s − 0.742·29-s − 0.359·31-s + 0.176·32-s − 0.348·33-s + 0.171·34-s + ⋯ |
Λ(s)=(=(2550s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2550s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.944943973 |
L(21) |
≈ |
1.944943973 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 5 | 1 |
| 17 | 1−T |
good | 7 | 1+4T+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1+2T+pT2 |
| 19 | 1−8T+pT2 |
| 23 | 1+T+pT2 |
| 29 | 1+4T+pT2 |
| 31 | 1+2T+pT2 |
| 37 | 1+3T+pT2 |
| 41 | 1+T+pT2 |
| 43 | 1−6T+pT2 |
| 47 | 1+4T+pT2 |
| 53 | 1−13T+pT2 |
| 59 | 1−15T+pT2 |
| 61 | 1−5T+pT2 |
| 67 | 1−10T+pT2 |
| 71 | 1+T+pT2 |
| 73 | 1−16T+pT2 |
| 79 | 1−12T+pT2 |
| 83 | 1−11T+pT2 |
| 89 | 1+2T+pT2 |
| 97 | 1+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.209755998454270114203911022719, −7.87105130903269111058989848290, −6.98710421223036875408666754803, −6.65493342530741298494903504210, −5.60597537364871891808742500625, −5.24911866627135529505220565858, −3.90552656055871966781048056829, −3.44276001183761516973585326928, −2.33700547962649024897939253258, −0.811083164846458355875009988219,
0.811083164846458355875009988219, 2.33700547962649024897939253258, 3.44276001183761516973585326928, 3.90552656055871966781048056829, 5.24911866627135529505220565858, 5.60597537364871891808742500625, 6.65493342530741298494903504210, 6.98710421223036875408666754803, 7.87105130903269111058989848290, 9.209755998454270114203911022719