Properties

Label 2-2550-1.1-c1-0-6
Degree 22
Conductor 25502550
Sign 11
Analytic cond. 20.361820.3618
Root an. cond. 4.512414.51241
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 4·7-s + 8-s + 9-s + 2·11-s − 12-s − 2·13-s − 4·14-s + 16-s + 17-s + 18-s + 8·19-s + 4·21-s + 2·22-s − 23-s − 24-s − 2·26-s − 27-s − 4·28-s − 4·29-s − 2·31-s + 32-s − 2·33-s + 34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.603·11-s − 0.288·12-s − 0.554·13-s − 1.06·14-s + 1/4·16-s + 0.242·17-s + 0.235·18-s + 1.83·19-s + 0.872·21-s + 0.426·22-s − 0.208·23-s − 0.204·24-s − 0.392·26-s − 0.192·27-s − 0.755·28-s − 0.742·29-s − 0.359·31-s + 0.176·32-s − 0.348·33-s + 0.171·34-s + ⋯

Functional equation

Λ(s)=(2550s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(2550s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 25502550    =    2352172 \cdot 3 \cdot 5^{2} \cdot 17
Sign: 11
Analytic conductor: 20.361820.3618
Root analytic conductor: 4.512414.51241
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 2550, ( :1/2), 1)(2,\ 2550,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 1.9449439731.944943973
L(12)L(\frac12) \approx 1.9449439731.944943973
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1T 1 - T
3 1+T 1 + T
5 1 1
17 1T 1 - T
good7 1+4T+pT2 1 + 4 T + p T^{2}
11 12T+pT2 1 - 2 T + p T^{2}
13 1+2T+pT2 1 + 2 T + p T^{2}
19 18T+pT2 1 - 8 T + p T^{2}
23 1+T+pT2 1 + T + p T^{2}
29 1+4T+pT2 1 + 4 T + p T^{2}
31 1+2T+pT2 1 + 2 T + p T^{2}
37 1+3T+pT2 1 + 3 T + p T^{2}
41 1+T+pT2 1 + T + p T^{2}
43 16T+pT2 1 - 6 T + p T^{2}
47 1+4T+pT2 1 + 4 T + p T^{2}
53 113T+pT2 1 - 13 T + p T^{2}
59 115T+pT2 1 - 15 T + p T^{2}
61 15T+pT2 1 - 5 T + p T^{2}
67 110T+pT2 1 - 10 T + p T^{2}
71 1+T+pT2 1 + T + p T^{2}
73 116T+pT2 1 - 16 T + p T^{2}
79 112T+pT2 1 - 12 T + p T^{2}
83 111T+pT2 1 - 11 T + p T^{2}
89 1+2T+pT2 1 + 2 T + p T^{2}
97 1+pT2 1 + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.209755998454270114203911022719, −7.87105130903269111058989848290, −6.98710421223036875408666754803, −6.65493342530741298494903504210, −5.60597537364871891808742500625, −5.24911866627135529505220565858, −3.90552656055871966781048056829, −3.44276001183761516973585326928, −2.33700547962649024897939253258, −0.811083164846458355875009988219, 0.811083164846458355875009988219, 2.33700547962649024897939253258, 3.44276001183761516973585326928, 3.90552656055871966781048056829, 5.24911866627135529505220565858, 5.60597537364871891808742500625, 6.65493342530741298494903504210, 6.98710421223036875408666754803, 7.87105130903269111058989848290, 9.209755998454270114203911022719

Graph of the ZZ-function along the critical line