L(s) = 1 | + (1.73 − i)2-s + (−3.93 − 6.82i)3-s + (1.99 − 3.46i)4-s + 3.30i·5-s + (−13.6 − 7.87i)6-s + (27.1 + 15.6i)7-s − 7.99i·8-s + (−17.5 + 30.3i)9-s + (3.30 + 5.72i)10-s + (13.5 − 7.80i)11-s − 31.5·12-s + (−45.2 − 12.2i)13-s + 62.7·14-s + (22.5 − 13.0i)15-s + (−8 − 13.8i)16-s + (−53.8 + 93.2i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.757 − 1.31i)3-s + (0.249 − 0.433i)4-s + 0.295i·5-s + (−0.928 − 0.535i)6-s + (1.46 + 0.847i)7-s − 0.353i·8-s + (−0.648 + 1.12i)9-s + (0.104 + 0.181i)10-s + (0.370 − 0.213i)11-s − 0.757·12-s + (−0.965 − 0.260i)13-s + 1.19·14-s + (0.388 − 0.224i)15-s + (−0.125 − 0.216i)16-s + (−0.768 + 1.33i)17-s + ⋯ |
Λ(s)=(=(26s/2ΓC(s)L(s)(0.244+0.969i)Λ(4−s)
Λ(s)=(=(26s/2ΓC(s+3/2)L(s)(0.244+0.969i)Λ(1−s)
Degree: |
2 |
Conductor: |
26
= 2⋅13
|
Sign: |
0.244+0.969i
|
Analytic conductor: |
1.53404 |
Root analytic conductor: |
1.23856 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ26(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 26, ( :3/2), 0.244+0.969i)
|
Particular Values
L(2) |
≈ |
1.07551−0.838075i |
L(21) |
≈ |
1.07551−0.838075i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.73+i)T |
| 13 | 1+(45.2+12.2i)T |
good | 3 | 1+(3.93+6.82i)T+(−13.5+23.3i)T2 |
| 5 | 1−3.30iT−125T2 |
| 7 | 1+(−27.1−15.6i)T+(171.5+297.i)T2 |
| 11 | 1+(−13.5+7.80i)T+(665.5−1.15e3i)T2 |
| 17 | 1+(53.8−93.2i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(−52.6−30.3i)T+(3.42e3+5.94e3i)T2 |
| 23 | 1+(62.1+107.i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(29.1+50.4i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1−200.iT−2.97e4T2 |
| 37 | 1+(90.9−52.5i)T+(2.53e4−4.38e4i)T2 |
| 41 | 1+(191.−110.i)T+(3.44e4−5.96e4i)T2 |
| 43 | 1+(−56.0+97.0i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+512.iT−1.03e5T2 |
| 53 | 1+221.T+1.48e5T2 |
| 59 | 1+(482.+278.i)T+(1.02e5+1.77e5i)T2 |
| 61 | 1+(−229.+396.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(−458.+264.i)T+(1.50e5−2.60e5i)T2 |
| 71 | 1+(−58.5−33.7i)T+(1.78e5+3.09e5i)T2 |
| 73 | 1−104.iT−3.89e5T2 |
| 79 | 1−611.T+4.93e5T2 |
| 83 | 1−491.iT−5.71e5T2 |
| 89 | 1+(−326.+188.i)T+(3.52e5−6.10e5i)T2 |
| 97 | 1+(496.+286.i)T+(4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.11253226967435358479314307688, −15.07526386834331592777356934036, −14.11620808780201996721979729202, −12.56631071186745854762183705014, −11.89339979386038912590231776909, −10.79817218959722222193822344186, −8.224986110142498035863455076317, −6.60010098708107718570133843390, −5.17822042389354457891908704054, −1.89095595527684902840214352272,
4.39504102677803828056437179469, 5.12640840160697463593928620698, 7.38599936240909339681364804143, 9.445081460010016499771947749226, 11.01706449775405089261266237962, 11.80240784080167058729983132416, 13.83550610160791396192164991618, 14.86965609544306747728503129161, 16.01286565797540793298010119901, 17.03307696654649896442688469490