L(s) = 1 | + (−6.92 + 4i)2-s + (−34.8 − 60.3i)3-s + (31.9 − 55.4i)4-s − 226. i·5-s + (483. + 278. i)6-s + (−154. − 89.2i)7-s + 511. i·8-s + (−1.33e3 + 2.31e3i)9-s + (907. + 1.57e3i)10-s + (−762. + 440. i)11-s − 4.46e3·12-s + (−7.46e3 + 2.64e3i)13-s + 1.42e3·14-s + (−1.36e4 + 7.90e3i)15-s + (−2.04e3 − 3.54e3i)16-s + (−5.09e3 + 8.81e3i)17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.745 − 1.29i)3-s + (0.249 − 0.433i)4-s − 0.811i·5-s + (0.912 + 0.527i)6-s + (−0.170 − 0.0983i)7-s + 0.353i·8-s + (−0.611 + 1.05i)9-s + (0.286 + 0.496i)10-s + (−0.172 + 0.0996i)11-s − 0.745·12-s + (−0.942 + 0.333i)13-s + 0.139·14-s + (−1.04 + 0.604i)15-s + (−0.125 − 0.216i)16-s + (−0.251 + 0.435i)17-s + ⋯ |
Λ(s)=(=(26s/2ΓC(s)L(s)(−0.752−0.659i)Λ(8−s)
Λ(s)=(=(26s/2ΓC(s+7/2)L(s)(−0.752−0.659i)Λ(1−s)
Degree: |
2 |
Conductor: |
26
= 2⋅13
|
Sign: |
−0.752−0.659i
|
Analytic conductor: |
8.12201 |
Root analytic conductor: |
2.84991 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ26(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 26, ( :7/2), −0.752−0.659i)
|
Particular Values
L(4) |
≈ |
0.0610159+0.162211i |
L(21) |
≈ |
0.0610159+0.162211i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(6.92−4i)T |
| 13 | 1+(7.46e3−2.64e3i)T |
good | 3 | 1+(34.8+60.3i)T+(−1.09e3+1.89e3i)T2 |
| 5 | 1+226.iT−7.81e4T2 |
| 7 | 1+(154.+89.2i)T+(4.11e5+7.13e5i)T2 |
| 11 | 1+(762.−440.i)T+(9.74e6−1.68e7i)T2 |
| 17 | 1+(5.09e3−8.81e3i)T+(−2.05e8−3.55e8i)T2 |
| 19 | 1+(−9.79e3−5.65e3i)T+(4.46e8+7.74e8i)T2 |
| 23 | 1+(−4.60e4−7.97e4i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(7.93e4+1.37e5i)T+(−8.62e9+1.49e10i)T2 |
| 31 | 1+1.95e5iT−2.75e10T2 |
| 37 | 1+(4.47e5−2.58e5i)T+(4.74e10−8.22e10i)T2 |
| 41 | 1+(5.63e5−3.25e5i)T+(9.73e10−1.68e11i)T2 |
| 43 | 1+(−3.46e5+5.99e5i)T+(−1.35e11−2.35e11i)T2 |
| 47 | 1−5.23e5iT−5.06e11T2 |
| 53 | 1+1.07e6T+1.17e12T2 |
| 59 | 1+(1.80e6+1.04e6i)T+(1.24e12+2.15e12i)T2 |
| 61 | 1+(−7.43e5+1.28e6i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(6.86e5−3.96e5i)T+(3.03e12−5.24e12i)T2 |
| 71 | 1+(−4.33e6−2.50e6i)T+(4.54e12+7.87e12i)T2 |
| 73 | 1+2.74e6iT−1.10e13T2 |
| 79 | 1+2.95e6T+1.92e13T2 |
| 83 | 1−6.23e6iT−2.71e13T2 |
| 89 | 1+(2.70e6−1.56e6i)T+(2.21e13−3.83e13i)T2 |
| 97 | 1+(5.04e6+2.91e6i)T+(4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.38648542523723521865256970696, −13.56363594343123785023814252528, −12.49886737943253041545341308862, −11.41145100506111394543258473487, −9.570097910191547616892413640493, −7.935853897189349539682281824661, −6.79211665126987161518610494449, −5.31276606091457072559279677294, −1.61087922382475485658296601917, −0.11733695125166515010796978340,
3.06780212944402328204794272954, 5.01282119281704260697295693677, 6.96640931407194190411757032301, 9.093649503693623975723519871512, 10.37056072985871347926515079012, 10.94933018051188361241312957940, 12.38469949785675697195086672794, 14.53123703930002615028244001058, 15.67605501874260052907107924489, 16.65241944727704893452636880362