L(s) = 1 | + (6.92 − 4i)2-s + (−39.6 − 68.7i)3-s + (31.9 − 55.4i)4-s + 12.5i·5-s + (−549. − 317. i)6-s + (−93.7 − 54.1i)7-s − 511. i·8-s + (−2.05e3 + 3.56e3i)9-s + (50.2 + 87.0i)10-s + (−5.77e3 + 3.33e3i)11-s − 5.07e3·12-s + (5.20e3 − 5.97e3i)13-s − 865.·14-s + (863. − 498. i)15-s + (−2.04e3 − 3.54e3i)16-s + (8.26e3 − 1.43e4i)17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.848 − 1.46i)3-s + (0.249 − 0.433i)4-s + 0.0449i·5-s + (−1.03 − 0.600i)6-s + (−0.103 − 0.0596i)7-s − 0.353i·8-s + (−0.940 + 1.62i)9-s + (0.0158 + 0.0275i)10-s + (−1.30 + 0.755i)11-s − 0.848·12-s + (0.656 − 0.754i)13-s − 0.0843·14-s + (0.0660 − 0.0381i)15-s + (−0.125 − 0.216i)16-s + (0.408 − 0.706i)17-s + ⋯ |
Λ(s)=(=(26s/2ΓC(s)L(s)(−0.978−0.203i)Λ(8−s)
Λ(s)=(=(26s/2ΓC(s+7/2)L(s)(−0.978−0.203i)Λ(1−s)
Degree: |
2 |
Conductor: |
26
= 2⋅13
|
Sign: |
−0.978−0.203i
|
Analytic conductor: |
8.12201 |
Root analytic conductor: |
2.84991 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ26(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 26, ( :7/2), −0.978−0.203i)
|
Particular Values
L(4) |
≈ |
0.117079+1.13606i |
L(21) |
≈ |
0.117079+1.13606i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−6.92+4i)T |
| 13 | 1+(−5.20e3+5.97e3i)T |
good | 3 | 1+(39.6+68.7i)T+(−1.09e3+1.89e3i)T2 |
| 5 | 1−12.5iT−7.81e4T2 |
| 7 | 1+(93.7+54.1i)T+(4.11e5+7.13e5i)T2 |
| 11 | 1+(5.77e3−3.33e3i)T+(9.74e6−1.68e7i)T2 |
| 17 | 1+(−8.26e3+1.43e4i)T+(−2.05e8−3.55e8i)T2 |
| 19 | 1+(3.05e4+1.76e4i)T+(4.46e8+7.74e8i)T2 |
| 23 | 1+(1.39e4+2.42e4i)T+(−1.70e9+2.94e9i)T2 |
| 29 | 1+(1.66e4+2.88e4i)T+(−8.62e9+1.49e10i)T2 |
| 31 | 1+2.20e5iT−2.75e10T2 |
| 37 | 1+(−1.65e5+9.55e4i)T+(4.74e10−8.22e10i)T2 |
| 41 | 1+(7.05e4−4.07e4i)T+(9.73e10−1.68e11i)T2 |
| 43 | 1+(4.84e5−8.38e5i)T+(−1.35e11−2.35e11i)T2 |
| 47 | 1+1.10e6iT−5.06e11T2 |
| 53 | 1−1.60e5T+1.17e12T2 |
| 59 | 1+(−1.93e6−1.11e6i)T+(1.24e12+2.15e12i)T2 |
| 61 | 1+(9.34e5−1.61e6i)T+(−1.57e12−2.72e12i)T2 |
| 67 | 1+(−3.10e6+1.79e6i)T+(3.03e12−5.24e12i)T2 |
| 71 | 1+(−6.40e5−3.69e5i)T+(4.54e12+7.87e12i)T2 |
| 73 | 1+4.24e6iT−1.10e13T2 |
| 79 | 1−2.45e6T+1.92e13T2 |
| 83 | 1−5.19e6iT−2.71e13T2 |
| 89 | 1+(−3.73e6+2.15e6i)T+(2.21e13−3.83e13i)T2 |
| 97 | 1+(−7.39e6−4.27e6i)T+(4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.04385052480766598393517429954, −13.24015562999806584072295180505, −12.91706630222117049417192767867, −11.61386709412650523267148955876, −10.44884752091934324325533139687, −7.85579486230397650621220371352, −6.53321831304394322712130495265, −5.17510533056352246801075894886, −2.37990944217936950273259352152, −0.51590877590071969066773570284,
3.59045083702080530927474020784, 5.02729663381648223485762046152, 6.17694098777086146768695800518, 8.556803565677085355736546742148, 10.33066978805869215065466876957, 11.19960150795027630442843170585, 12.71618915606532455178965506443, 14.33486800689302985194822935378, 15.60081821679508792938281135372, 16.25320499020706533926400700840