L(s) = 1 | + (−0.366 + 1.36i)2-s + (0.866 + 1.5i)3-s + (−1.73 − i)4-s + (1.73 + 1.73i)5-s + (−2.36 + 0.633i)6-s + (−2.03 − 7.59i)7-s + (2 − 1.99i)8-s + (3 − 5.19i)9-s + (−2.99 + 1.73i)10-s + (−4.96 − 1.33i)11-s − 3.46i·12-s + (−9.92 + 8.39i)13-s + 11.1·14-s + (−1.09 + 4.09i)15-s + (1.99 + 3.46i)16-s + (24.6 + 14.2i)17-s + ⋯ |
L(s) = 1 | + (−0.183 + 0.683i)2-s + (0.288 + 0.5i)3-s + (−0.433 − 0.250i)4-s + (0.346 + 0.346i)5-s + (−0.394 + 0.105i)6-s + (−0.290 − 1.08i)7-s + (0.250 − 0.249i)8-s + (0.333 − 0.577i)9-s + (−0.299 + 0.173i)10-s + (−0.451 − 0.120i)11-s − 0.288i·12-s + (−0.763 + 0.645i)13-s + 0.794·14-s + (−0.0732 + 0.273i)15-s + (0.124 + 0.216i)16-s + (1.45 + 0.838i)17-s + ⋯ |
Λ(s)=(=(26s/2ΓC(s)L(s)(0.538−0.842i)Λ(3−s)
Λ(s)=(=(26s/2ΓC(s+1)L(s)(0.538−0.842i)Λ(1−s)
Degree: |
2 |
Conductor: |
26
= 2⋅13
|
Sign: |
0.538−0.842i
|
Analytic conductor: |
0.708448 |
Root analytic conductor: |
0.841693 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ26(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 26, ( :1), 0.538−0.842i)
|
Particular Values
L(23) |
≈ |
0.801043+0.438742i |
L(21) |
≈ |
0.801043+0.438742i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.366−1.36i)T |
| 13 | 1+(9.92−8.39i)T |
good | 3 | 1+(−0.866−1.5i)T+(−4.5+7.79i)T2 |
| 5 | 1+(−1.73−1.73i)T+25iT2 |
| 7 | 1+(2.03+7.59i)T+(−42.4+24.5i)T2 |
| 11 | 1+(4.96+1.33i)T+(104.+60.5i)T2 |
| 17 | 1+(−24.6−14.2i)T+(144.5+250.i)T2 |
| 19 | 1+(24.8−6.66i)T+(312.−180.5i)T2 |
| 23 | 1+(15.1−8.76i)T+(264.5−458.i)T2 |
| 29 | 1+(−0.356−0.617i)T+(−420.5+728.i)T2 |
| 31 | 1+(23.3+23.3i)T+961iT2 |
| 37 | 1+(−21.2−5.69i)T+(1.18e3+684.5i)T2 |
| 41 | 1+(11.2−42.0i)T+(−1.45e3−840.5i)T2 |
| 43 | 1+(−63.7−36.8i)T+(924.5+1.60e3i)T2 |
| 47 | 1+(−33+33i)T−2.20e3iT2 |
| 53 | 1+80.1T+2.80e3T2 |
| 59 | 1+(−10.1−37.9i)T+(−3.01e3+1.74e3i)T2 |
| 61 | 1+(−14.3+24.7i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−12.8+47.9i)T+(−3.88e3−2.24e3i)T2 |
| 71 | 1+(−7.03+1.88i)T+(4.36e3−2.52e3i)T2 |
| 73 | 1+(−12.7+12.7i)T−5.32e3iT2 |
| 79 | 1+14.3T+6.24e3T2 |
| 83 | 1+(−87.8−87.8i)T+6.88e3iT2 |
| 89 | 1+(52.2+13.9i)T+(6.85e3+3.96e3i)T2 |
| 97 | 1+(−131.+35.2i)T+(8.14e3−4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.16681316004595320679292317531, −16.35340360051428110843122838895, −14.91153427385912207106049339107, −14.15645822703157626923880970090, −12.66271162178600976518060930701, −10.43282061106278180731677964546, −9.641565124467089165049291160972, −7.80562933100406125597898926348, −6.31424320090316127341430914194, −4.07335077191326694410777982992,
2.44872389725305077785373347331, 5.31972203220906167945160620566, 7.69368741356450004548514797437, 9.129428276412286806304527746000, 10.45145477118621779010823865466, 12.30987150271449776107319815442, 12.89145518612938970727692159288, 14.35103853744856204047209784366, 15.91411593938446182523645995496, 17.33856685058084169175103324812