L(s) = 1 | + (2.73 + 0.732i)2-s + (3.73 + 6.46i)3-s + (6.92 + 4i)4-s + (−3.43 + 3.43i)5-s + (5.46 + 20.3i)6-s + (5.09 − 1.36i)7-s + (15.9 + 16i)8-s + (12.6 − 21.9i)9-s + (−11.9 + 6.87i)10-s + (18.2 − 68.0i)11-s + 59.7i·12-s + (−147. − 82.1i)13-s + 14.9·14-s + (−35.0 − 9.38i)15-s + (31.9 + 55.4i)16-s + (−163. − 94.5i)17-s + ⋯ |
L(s) = 1 | + (0.683 + 0.183i)2-s + (0.414 + 0.718i)3-s + (0.433 + 0.250i)4-s + (−0.137 + 0.137i)5-s + (0.151 + 0.566i)6-s + (0.104 − 0.0278i)7-s + (0.249 + 0.250i)8-s + (0.156 − 0.270i)9-s + (−0.119 + 0.0687i)10-s + (0.150 − 0.562i)11-s + 0.414i·12-s + (−0.873 − 0.486i)13-s + 0.0761·14-s + (−0.155 − 0.0417i)15-s + (0.124 + 0.216i)16-s + (−0.566 − 0.327i)17-s + ⋯ |
Λ(s)=(=(26s/2ΓC(s)L(s)(0.713−0.700i)Λ(5−s)
Λ(s)=(=(26s/2ΓC(s+2)L(s)(0.713−0.700i)Λ(1−s)
Degree: |
2 |
Conductor: |
26
= 2⋅13
|
Sign: |
0.713−0.700i
|
Analytic conductor: |
2.68761 |
Root analytic conductor: |
1.63939 |
Motivic weight: |
4 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ26(15,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 26, ( :2), 0.713−0.700i)
|
Particular Values
L(25) |
≈ |
1.90328+0.777510i |
L(21) |
≈ |
1.90328+0.777510i |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2.73−0.732i)T |
| 13 | 1+(147.+82.1i)T |
good | 3 | 1+(−3.73−6.46i)T+(−40.5+70.1i)T2 |
| 5 | 1+(3.43−3.43i)T−625iT2 |
| 7 | 1+(−5.09+1.36i)T+(2.07e3−1.20e3i)T2 |
| 11 | 1+(−18.2+68.0i)T+(−1.26e4−7.32e3i)T2 |
| 17 | 1+(163.+94.5i)T+(4.17e4+7.23e4i)T2 |
| 19 | 1+(51.3+191.i)T+(−1.12e5+6.51e4i)T2 |
| 23 | 1+(27.6−15.9i)T+(1.39e5−2.42e5i)T2 |
| 29 | 1+(−724.−1.25e3i)T+(−3.53e5+6.12e5i)T2 |
| 31 | 1+(23.2−23.2i)T−9.23e5iT2 |
| 37 | 1+(203.−758.i)T+(−1.62e6−9.37e5i)T2 |
| 41 | 1+(439.+117.i)T+(2.44e6+1.41e6i)T2 |
| 43 | 1+(2.51e3+1.45e3i)T+(1.70e6+2.96e6i)T2 |
| 47 | 1+(1.37e3+1.37e3i)T+4.87e6iT2 |
| 53 | 1−3.45e3T+7.89e6T2 |
| 59 | 1+(−6.20e3+1.66e3i)T+(1.04e7−6.05e6i)T2 |
| 61 | 1+(3.10e3−5.38e3i)T+(−6.92e6−1.19e7i)T2 |
| 67 | 1+(2.78e3+745.i)T+(1.74e7+1.00e7i)T2 |
| 71 | 1+(−791.−2.95e3i)T+(−2.20e7+1.27e7i)T2 |
| 73 | 1+(4.76e3+4.76e3i)T+2.83e7iT2 |
| 79 | 1−2.82e3T+3.89e7T2 |
| 83 | 1+(−7.46e3+7.46e3i)T−4.74e7iT2 |
| 89 | 1+(−979.+3.65e3i)T+(−5.43e7−3.13e7i)T2 |
| 97 | 1+(−63.2−235.i)T+(−7.66e7+4.42e7i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.48045627423468707044700866795, −15.35086211030961794288275611256, −14.60380878242848531038501878414, −13.25496612854472803718676387218, −11.80821258113160873964517010102, −10.33986849750646214541612179771, −8.783873625917649147030368291222, −6.94552622341130853083284833195, −4.92955580293316892419119991218, −3.26056089029419311340724104468,
2.14174594879181511453489401984, 4.55143479834713795941466800194, 6.68139429549154780970785242807, 8.088145575041939862798703442861, 10.05751729070934813465558439209, 11.80096834605982323192265366161, 12.80698607498361160185442452159, 13.92043326473997408259952418507, 14.98501440330062831964032861295, 16.40149341605685704625152749174