L(s) = 1 | + (−1 − 1.73i)2-s + (4.43 + 7.67i)3-s + (−1.99 + 3.46i)4-s + 3.86·5-s + (8.86 − 15.3i)6-s + (7.56 − 13.1i)7-s + 7.99·8-s + (−25.7 + 44.6i)9-s + (−3.86 − 6.69i)10-s + (−27.0 − 46.8i)11-s − 35.4·12-s + (−19.7 + 42.4i)13-s − 30.2·14-s + (17.1 + 29.6i)15-s + (−8 − 13.8i)16-s + (61.9 − 107. i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.853 + 1.47i)3-s + (−0.249 + 0.433i)4-s + 0.345·5-s + (0.603 − 1.04i)6-s + (0.408 − 0.707i)7-s + 0.353·8-s + (−0.955 + 1.65i)9-s + (−0.122 − 0.211i)10-s + (−0.740 − 1.28i)11-s − 0.853·12-s + (−0.422 + 0.906i)13-s − 0.577·14-s + (0.294 + 0.510i)15-s + (−0.125 − 0.216i)16-s + (0.883 − 1.53i)17-s + ⋯ |
Λ(s)=(=(26s/2ΓC(s)L(s)(0.937−0.348i)Λ(4−s)
Λ(s)=(=(26s/2ΓC(s+3/2)L(s)(0.937−0.348i)Λ(1−s)
Degree: |
2 |
Conductor: |
26
= 2⋅13
|
Sign: |
0.937−0.348i
|
Analytic conductor: |
1.53404 |
Root analytic conductor: |
1.23856 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ26(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 26, ( :3/2), 0.937−0.348i)
|
Particular Values
L(2) |
≈ |
1.21934+0.219197i |
L(21) |
≈ |
1.21934+0.219197i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1+1.73i)T |
| 13 | 1+(19.7−42.4i)T |
good | 3 | 1+(−4.43−7.67i)T+(−13.5+23.3i)T2 |
| 5 | 1−3.86T+125T2 |
| 7 | 1+(−7.56+13.1i)T+(−171.5−297.i)T2 |
| 11 | 1+(27.0+46.8i)T+(−665.5+1.15e3i)T2 |
| 17 | 1+(−61.9+107.i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(4.43−7.67i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(19.2+33.4i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(−93.6−162.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+36.7T+2.97e4T2 |
| 37 | 1+(−160.−278.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+(−13.1−22.7i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(68.8−119.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+300.T+1.03e5T2 |
| 53 | 1+260.T+1.48e5T2 |
| 59 | 1+(−123.+213.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(45.6−79.0i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(205.+355.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+(−212.+367.i)T+(−1.78e5−3.09e5i)T2 |
| 73 | 1+421.T+3.89e5T2 |
| 79 | 1−733.T+4.93e5T2 |
| 83 | 1+616.T+5.71e5T2 |
| 89 | 1+(−103.−179.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1+(−370.+642.i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.73112378854812163131013349023, −16.07057883600783454144399520295, −14.33624431441409987445945376478, −13.70367260191904259767813895005, −11.41298565846761534169495719962, −10.28323222592373595737720413344, −9.347014839264280800319294706777, −8.015176488340728802219689962142, −4.80128448677247860820964192422, −3.11491325376961030866149668868,
2.06980843022981871750615492600, 5.82533375931178049587334571822, 7.52447581380564078375526246085, 8.274971565934567641208667797460, 9.921244768777208482516415991028, 12.30633046870530535484613056097, 13.15564382592871775920621335707, 14.56459927741004992978303773182, 15.29489146617131036351877985056, 17.50458258406368244486365528851