L(s) = 1 | + (−1 − 1.73i)2-s + (4.43 + 7.67i)3-s + (−1.99 + 3.46i)4-s + 3.86·5-s + (8.86 − 15.3i)6-s + (7.56 − 13.1i)7-s + 7.99·8-s + (−25.7 + 44.6i)9-s + (−3.86 − 6.69i)10-s + (−27.0 − 46.8i)11-s − 35.4·12-s + (−19.7 + 42.4i)13-s − 30.2·14-s + (17.1 + 29.6i)15-s + (−8 − 13.8i)16-s + (61.9 − 107. i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.853 + 1.47i)3-s + (−0.249 + 0.433i)4-s + 0.345·5-s + (0.603 − 1.04i)6-s + (0.408 − 0.707i)7-s + 0.353·8-s + (−0.955 + 1.65i)9-s + (−0.122 − 0.211i)10-s + (−0.740 − 1.28i)11-s − 0.853·12-s + (−0.422 + 0.906i)13-s − 0.577·14-s + (0.294 + 0.510i)15-s + (−0.125 − 0.216i)16-s + (0.883 − 1.53i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.937 - 0.348i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.937 - 0.348i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.21934 + 0.219197i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.21934 + 0.219197i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + 1.73i)T \) |
| 13 | \( 1 + (19.7 - 42.4i)T \) |
good | 3 | \( 1 + (-4.43 - 7.67i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 - 3.86T + 125T^{2} \) |
| 7 | \( 1 + (-7.56 + 13.1i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (27.0 + 46.8i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (-61.9 + 107. i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (4.43 - 7.67i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (19.2 + 33.4i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-93.6 - 162. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + 36.7T + 2.97e4T^{2} \) |
| 37 | \( 1 + (-160. - 278. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (-13.1 - 22.7i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (68.8 - 119. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + 300.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 260.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-123. + 213. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (45.6 - 79.0i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (205. + 355. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-212. + 367. i)T + (-1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 + 421.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 733.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 616.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-103. - 179. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (-370. + 642. i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.73112378854812163131013349023, −16.07057883600783454144399520295, −14.33624431441409987445945376478, −13.70367260191904259767813895005, −11.41298565846761534169495719962, −10.28323222592373595737720413344, −9.347014839264280800319294706777, −8.015176488340728802219689962142, −4.80128448677247860820964192422, −3.11491325376961030866149668868,
2.06980843022981871750615492600, 5.82533375931178049587334571822, 7.52447581380564078375526246085, 8.274971565934567641208667797460, 9.921244768777208482516415991028, 12.30633046870530535484613056097, 13.15564382592871775920621335707, 14.56459927741004992978303773182, 15.29489146617131036351877985056, 17.50458258406368244486365528851