L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (0.866 + 0.5i)7-s − 0.999i·8-s + (0.5 − 0.866i)9-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + 0.999·14-s + (−0.5 − 0.866i)16-s − 0.999i·18-s + (−0.5 + 0.866i)19-s + (0.866 + 0.499i)22-s + (−1.73 + i)23-s + 0.999·26-s + (0.866 − 0.499i)28-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (0.866 + 0.5i)7-s − 0.999i·8-s + (0.5 − 0.866i)9-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + 0.999·14-s + (−0.5 − 0.866i)16-s − 0.999i·18-s + (−0.5 + 0.866i)19-s + (0.866 + 0.499i)22-s + (−1.73 + i)23-s + 0.999·26-s + (0.866 − 0.499i)28-s + ⋯ |
Λ(s)=(=(2600s/2ΓC(s)L(s)(0.711+0.702i)Λ(1−s)
Λ(s)=(=(2600s/2ΓC(s)L(s)(0.711+0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
2600
= 23⋅52⋅13
|
Sign: |
0.711+0.702i
|
Analytic conductor: |
1.29756 |
Root analytic conductor: |
1.13910 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2600(1251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2600, ( :0), 0.711+0.702i)
|
Particular Values
L(21) |
≈ |
2.331297676 |
L(21) |
≈ |
2.331297676 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 5 | 1 |
| 13 | 1+(−0.866−0.5i)T |
good | 3 | 1+(−0.5+0.866i)T2 |
| 7 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 17 | 1+(−0.5−0.866i)T2 |
| 19 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1+(1.73−i)T+(0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1−T2 |
| 37 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 41 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 43 | 1+(−0.5−0.866i)T2 |
| 47 | 1+iT−T2 |
| 53 | 1−iT−T2 |
| 59 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 97 | 1+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.076642343936522377521252169828, −8.278268736623450508859377964752, −7.21425173183678276256614158767, −6.50124884871405497195740788601, −5.78855115778608661062616825562, −4.96196569180102712580734685827, −3.91627357165780003260548606954, −3.70145068503795363484559927788, −1.97187022198770110473106143615, −1.61018348605316155779429868423,
1.54290568411418966785320005331, 2.66582262675062126342870991697, 3.82692314081633048224677467433, 4.41293593820350935875989440071, 5.19048447538248347690322585920, 6.07930160130108524365927013176, 6.72119592626390885985633431552, 7.66141646773502031640132174288, 8.263060163704091803249581421363, 8.683523341662305151145158447384