L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (0.866 + 0.5i)7-s − 0.999i·8-s + (0.5 − 0.866i)9-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + 0.999·14-s + (−0.5 − 0.866i)16-s − 0.999i·18-s + (−0.5 + 0.866i)19-s + (0.866 + 0.499i)22-s + (−1.73 + i)23-s + 0.999·26-s + (0.866 − 0.499i)28-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (0.866 + 0.5i)7-s − 0.999i·8-s + (0.5 − 0.866i)9-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)13-s + 0.999·14-s + (−0.5 − 0.866i)16-s − 0.999i·18-s + (−0.5 + 0.866i)19-s + (0.866 + 0.499i)22-s + (−1.73 + i)23-s + 0.999·26-s + (0.866 − 0.499i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.331297676\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.331297676\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-0.866 - 0.5i)T \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (1.73 - i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + iT - T^{2} \) |
| 53 | \( 1 - iT - T^{2} \) |
| 59 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.076642343936522377521252169828, −8.278268736623450508859377964752, −7.21425173183678276256614158767, −6.50124884871405497195740788601, −5.78855115778608661062616825562, −4.96196569180102712580734685827, −3.91627357165780003260548606954, −3.70145068503795363484559927788, −1.97187022198770110473106143615, −1.61018348605316155779429868423,
1.54290568411418966785320005331, 2.66582262675062126342870991697, 3.82692314081633048224677467433, 4.41293593820350935875989440071, 5.19048447538248347690322585920, 6.07930160130108524365927013176, 6.72119592626390885985633431552, 7.66141646773502031640132174288, 8.263060163704091803249581421363, 8.683523341662305151145158447384