L(s) = 1 | + 2-s − 1.73·3-s + 4-s − 1.73·6-s − 7-s + 8-s + 1.99·9-s − 1.73·12-s − 13-s − 14-s + 16-s + 1.73·17-s + 1.99·18-s + 1.73·21-s − 1.73·24-s − 26-s − 1.73·27-s − 28-s + 32-s + 1.73·34-s + 1.99·36-s + 37-s + 1.73·39-s + 1.73·42-s + 1.73·43-s + 47-s − 1.73·48-s + ⋯ |
L(s) = 1 | + 2-s − 1.73·3-s + 4-s − 1.73·6-s − 7-s + 8-s + 1.99·9-s − 1.73·12-s − 13-s − 14-s + 16-s + 1.73·17-s + 1.99·18-s + 1.73·21-s − 1.73·24-s − 26-s − 1.73·27-s − 28-s + 32-s + 1.73·34-s + 1.99·36-s + 37-s + 1.73·39-s + 1.73·42-s + 1.73·43-s + 47-s − 1.73·48-s + ⋯ |
Λ(s)=(=(2600s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(2600s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
2600
= 23⋅52⋅13
|
Sign: |
1
|
Analytic conductor: |
1.29756 |
Root analytic conductor: |
1.13910 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2600(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 2600, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.230018859 |
L(21) |
≈ |
1.230018859 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1 |
| 13 | 1+T |
good | 3 | 1+1.73T+T2 |
| 7 | 1+T+T2 |
| 11 | 1−T2 |
| 17 | 1−1.73T+T2 |
| 19 | 1−T2 |
| 23 | 1−T2 |
| 29 | 1−T2 |
| 31 | 1+T2 |
| 37 | 1−T+T2 |
| 41 | 1−T2 |
| 43 | 1−1.73T+T2 |
| 47 | 1−T+T2 |
| 53 | 1−T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1−T2 |
| 71 | 1−1.73T+T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.522487958944607961864714630526, −7.79635052144518044016939335623, −7.22241604658048938930039206152, −6.47137201464964437154848055536, −5.82219834444028657957592824014, −5.34300238800893777115157010075, −4.51005877094029633809506795905, −3.63059863656341321432137262474, −2.55128594963832080186597886290, −0.994106912809867627051311840340,
0.994106912809867627051311840340, 2.55128594963832080186597886290, 3.63059863656341321432137262474, 4.51005877094029633809506795905, 5.34300238800893777115157010075, 5.82219834444028657957592824014, 6.47137201464964437154848055536, 7.22241604658048938930039206152, 7.79635052144518044016939335623, 9.522487958944607961864714630526