L(s) = 1 | + 2-s − 1.73·3-s + 4-s − 1.73·6-s − 7-s + 8-s + 1.99·9-s − 1.73·12-s − 13-s − 14-s + 16-s + 1.73·17-s + 1.99·18-s + 1.73·21-s − 1.73·24-s − 26-s − 1.73·27-s − 28-s + 32-s + 1.73·34-s + 1.99·36-s + 37-s + 1.73·39-s + 1.73·42-s + 1.73·43-s + 47-s − 1.73·48-s + ⋯ |
L(s) = 1 | + 2-s − 1.73·3-s + 4-s − 1.73·6-s − 7-s + 8-s + 1.99·9-s − 1.73·12-s − 13-s − 14-s + 16-s + 1.73·17-s + 1.99·18-s + 1.73·21-s − 1.73·24-s − 26-s − 1.73·27-s − 28-s + 32-s + 1.73·34-s + 1.99·36-s + 37-s + 1.73·39-s + 1.73·42-s + 1.73·43-s + 47-s − 1.73·48-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.230018859\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.230018859\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 + 1.73T + T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 17 | \( 1 - 1.73T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 1.73T + T^{2} \) |
| 47 | \( 1 - T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - 1.73T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.522487958944607961864714630526, −7.79635052144518044016939335623, −7.22241604658048938930039206152, −6.47137201464964437154848055536, −5.82219834444028657957592824014, −5.34300238800893777115157010075, −4.51005877094029633809506795905, −3.63059863656341321432137262474, −2.55128594963832080186597886290, −0.994106912809867627051311840340,
0.994106912809867627051311840340, 2.55128594963832080186597886290, 3.63059863656341321432137262474, 4.51005877094029633809506795905, 5.34300238800893777115157010075, 5.82219834444028657957592824014, 6.47137201464964437154848055536, 7.22241604658048938930039206152, 7.79635052144518044016939335623, 9.522487958944607961864714630526