L(s) = 1 | − 3-s + (1 − i)7-s + (−1 + i)11-s + 13-s − 2i·17-s + (−1 + i)21-s + i·23-s + 27-s + 29-s + (−1 − i)31-s + (1 − i)33-s − 39-s − i·43-s − i·49-s + 2i·51-s + ⋯ |
L(s) = 1 | − 3-s + (1 − i)7-s + (−1 + i)11-s + 13-s − 2i·17-s + (−1 + i)21-s + i·23-s + 27-s + 29-s + (−1 − i)31-s + (1 − i)33-s − 39-s − i·43-s − i·49-s + 2i·51-s + ⋯ |
Λ(s)=(=(2600s/2ΓC(s)L(s)(0.471+0.881i)Λ(1−s)
Λ(s)=(=(2600s/2ΓC(s)L(s)(0.471+0.881i)Λ(1−s)
Degree: |
2 |
Conductor: |
2600
= 23⋅52⋅13
|
Sign: |
0.471+0.881i
|
Analytic conductor: |
1.29756 |
Root analytic conductor: |
1.13910 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2600(801,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2600, ( :0), 0.471+0.881i)
|
Particular Values
L(21) |
≈ |
0.8348378001 |
L(21) |
≈ |
0.8348378001 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 13 | 1−T |
good | 3 | 1+T+T2 |
| 7 | 1+(−1+i)T−iT2 |
| 11 | 1+(1−i)T−iT2 |
| 17 | 1+2iT−T2 |
| 19 | 1+iT2 |
| 23 | 1−iT−T2 |
| 29 | 1−T+T2 |
| 31 | 1+(1+i)T+iT2 |
| 37 | 1−iT2 |
| 41 | 1+iT2 |
| 43 | 1+iT−T2 |
| 47 | 1−iT2 |
| 53 | 1+T+T2 |
| 59 | 1−iT2 |
| 61 | 1−T+T2 |
| 67 | 1+(1+i)T+iT2 |
| 71 | 1+iT2 |
| 73 | 1+(−1+i)T−iT2 |
| 79 | 1−T+T2 |
| 83 | 1+iT2 |
| 89 | 1+(−1+i)T−iT2 |
| 97 | 1+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.974335055000032298610816652900, −7.88067564767536930508358346433, −7.45443314238938240696986919500, −6.70372248788775191879185165806, −5.65510493486234228790425747035, −4.99559791657977501237391734408, −4.50403868623672953307677643369, −3.28875099250166150528665345959, −1.99770493597723455456818382992, −0.69893219506802027098242103427,
1.26884347162068186505587203087, 2.47430384534340630315478143657, 3.57220742515065482532847037175, 4.75783534139078831867534267904, 5.41791615040720902154346114464, 6.03051350823542971735633980737, 6.50768722269845412283754053266, 8.004314595349097535579198092902, 8.421238248567540161118263750515, 8.828088370012134247305171807952