L(s) = 1 | − 3-s + (1 − i)7-s + (−1 + i)11-s + 13-s − 2i·17-s + (−1 + i)21-s + i·23-s + 27-s + 29-s + (−1 − i)31-s + (1 − i)33-s − 39-s − i·43-s − i·49-s + 2i·51-s + ⋯ |
L(s) = 1 | − 3-s + (1 − i)7-s + (−1 + i)11-s + 13-s − 2i·17-s + (−1 + i)21-s + i·23-s + 27-s + 29-s + (−1 − i)31-s + (1 − i)33-s − 39-s − i·43-s − i·49-s + 2i·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 + 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.471 + 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8348378001\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8348378001\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + T + T^{2} \) |
| 7 | \( 1 + (-1 + i)T - iT^{2} \) |
| 11 | \( 1 + (1 - i)T - iT^{2} \) |
| 17 | \( 1 + 2iT - T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 - iT - T^{2} \) |
| 29 | \( 1 - T + T^{2} \) |
| 31 | \( 1 + (1 + i)T + iT^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 + (1 + i)T + iT^{2} \) |
| 71 | \( 1 + iT^{2} \) |
| 73 | \( 1 + (-1 + i)T - iT^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (-1 + i)T - iT^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.974335055000032298610816652900, −7.88067564767536930508358346433, −7.45443314238938240696986919500, −6.70372248788775191879185165806, −5.65510493486234228790425747035, −4.99559791657977501237391734408, −4.50403868623672953307677643369, −3.28875099250166150528665345959, −1.99770493597723455456818382992, −0.69893219506802027098242103427,
1.26884347162068186505587203087, 2.47430384534340630315478143657, 3.57220742515065482532847037175, 4.75783534139078831867534267904, 5.41791615040720902154346114464, 6.03051350823542971735633980737, 6.50768722269845412283754053266, 8.004314595349097535579198092902, 8.421238248567540161118263750515, 8.828088370012134247305171807952