L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.5 + 0.866i)5-s + (0.309 − 0.951i)6-s + 0.209·7-s + (−0.309 + 0.951i)8-s + (−0.104 + 0.994i)10-s + (0.809 − 0.587i)12-s + (0.809 − 0.587i)13-s + (0.169 + 0.122i)14-s + (0.669 − 0.743i)15-s + (−0.809 + 0.587i)16-s + (−0.604 + 1.86i)17-s + (−0.669 + 0.743i)20-s + (−0.0646 − 0.198i)21-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.5 + 0.866i)5-s + (0.309 − 0.951i)6-s + 0.209·7-s + (−0.309 + 0.951i)8-s + (−0.104 + 0.994i)10-s + (0.809 − 0.587i)12-s + (0.809 − 0.587i)13-s + (0.169 + 0.122i)14-s + (0.669 − 0.743i)15-s + (−0.809 + 0.587i)16-s + (−0.604 + 1.86i)17-s + (−0.669 + 0.743i)20-s + (−0.0646 − 0.198i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.604 - 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.604 - 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.984545251\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.984545251\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.809 + 0.587i)T \) |
good | 3 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 - 0.209T + T^{2} \) |
| 11 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (0.604 - 1.86i)T + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-1.08 + 0.786i)T + (0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + 0.209T + T^{2} \) |
| 47 | \( 1 + (-0.604 - 1.86i)T + (-0.809 + 0.587i)T^{2} \) |
| 53 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 71 | \( 1 + (0.413 + 1.27i)T + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.929552080209667701559174666628, −7.910457969348046967544524559556, −7.64112378812113378471144616109, −6.57254419971491815371155506973, −6.12157977110801661170824127245, −5.80087172539769623501617847675, −4.39058661911185907421266775820, −3.64421445832829662485371011364, −2.53899628218013657918421247473, −1.63052232284242745040285389947,
1.17700883407338429930810536752, 2.29781808674198310552429290001, 3.44810014062428063497923132788, 4.44318092725068435045112300417, 4.83796012087468033544371435806, 5.43768513778952520158699161131, 6.38184806224669868836192324349, 7.17975173253572534292645553431, 8.565995313950494648205671754897, 9.174977091239441954253273558647