L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.5 + 0.866i)5-s + (0.309 − 0.951i)6-s + 0.209·7-s + (−0.309 + 0.951i)8-s + (−0.104 + 0.994i)10-s + (0.809 − 0.587i)12-s + (0.809 − 0.587i)13-s + (0.169 + 0.122i)14-s + (0.669 − 0.743i)15-s + (−0.809 + 0.587i)16-s + (−0.604 + 1.86i)17-s + (−0.669 + 0.743i)20-s + (−0.0646 − 0.198i)21-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.309 − 0.951i)3-s + (0.309 + 0.951i)4-s + (0.5 + 0.866i)5-s + (0.309 − 0.951i)6-s + 0.209·7-s + (−0.309 + 0.951i)8-s + (−0.104 + 0.994i)10-s + (0.809 − 0.587i)12-s + (0.809 − 0.587i)13-s + (0.169 + 0.122i)14-s + (0.669 − 0.743i)15-s + (−0.809 + 0.587i)16-s + (−0.604 + 1.86i)17-s + (−0.669 + 0.743i)20-s + (−0.0646 − 0.198i)21-s + ⋯ |
Λ(s)=(=(2600s/2ΓC(s)L(s)(0.604−0.796i)Λ(1−s)
Λ(s)=(=(2600s/2ΓC(s)L(s)(0.604−0.796i)Λ(1−s)
Degree: |
2 |
Conductor: |
2600
= 23⋅52⋅13
|
Sign: |
0.604−0.796i
|
Analytic conductor: |
1.29756 |
Root analytic conductor: |
1.13910 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2600(1091,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2600, ( :0), 0.604−0.796i)
|
Particular Values
L(21) |
≈ |
1.984545251 |
L(21) |
≈ |
1.984545251 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.809−0.587i)T |
| 5 | 1+(−0.5−0.866i)T |
| 13 | 1+(−0.809+0.587i)T |
good | 3 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 7 | 1−0.209T+T2 |
| 11 | 1+(−0.309−0.951i)T2 |
| 17 | 1+(0.604−1.86i)T+(−0.809−0.587i)T2 |
| 19 | 1+(0.809+0.587i)T2 |
| 23 | 1+(−0.309−0.951i)T2 |
| 29 | 1+(0.809−0.587i)T2 |
| 31 | 1+(−0.5+1.53i)T+(−0.809−0.587i)T2 |
| 37 | 1+(−1.08+0.786i)T+(0.309−0.951i)T2 |
| 41 | 1+(−0.309+0.951i)T2 |
| 43 | 1+0.209T+T2 |
| 47 | 1+(−0.604−1.86i)T+(−0.809+0.587i)T2 |
| 53 | 1+(0.809−0.587i)T2 |
| 59 | 1+(−0.309+0.951i)T2 |
| 61 | 1+(−0.309−0.951i)T2 |
| 67 | 1+(0.809+0.587i)T2 |
| 71 | 1+(0.413+1.27i)T+(−0.809+0.587i)T2 |
| 73 | 1+(−0.309−0.951i)T2 |
| 79 | 1+(0.809−0.587i)T2 |
| 83 | 1+(0.809+0.587i)T2 |
| 89 | 1+(−0.309−0.951i)T2 |
| 97 | 1+(0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.929552080209667701559174666628, −7.910457969348046967544524559556, −7.64112378812113378471144616109, −6.57254419971491815371155506973, −6.12157977110801661170824127245, −5.80087172539769623501617847675, −4.39058661911185907421266775820, −3.64421445832829662485371011364, −2.53899628218013657918421247473, −1.63052232284242745040285389947,
1.17700883407338429930810536752, 2.29781808674198310552429290001, 3.44810014062428063497923132788, 4.44318092725068435045112300417, 4.83796012087468033544371435806, 5.43768513778952520158699161131, 6.38184806224669868836192324349, 7.17975173253572534292645553431, 8.565995313950494648205671754897, 9.174977091239441954253273558647