L(s) = 1 | + (0.309 + 0.951i)2-s + (0.809 − 0.587i)3-s + (−0.809 + 0.587i)4-s + (−0.5 − 0.866i)5-s + (0.809 + 0.587i)6-s + 1.33·7-s + (−0.809 − 0.587i)8-s + (0.669 − 0.743i)10-s + (−0.309 + 0.951i)12-s + (0.309 − 0.951i)13-s + (0.413 + 1.27i)14-s + (−0.913 − 0.406i)15-s + (0.309 − 0.951i)16-s + (0.169 + 0.122i)17-s + (0.913 + 0.406i)20-s + (1.08 − 0.786i)21-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)2-s + (0.809 − 0.587i)3-s + (−0.809 + 0.587i)4-s + (−0.5 − 0.866i)5-s + (0.809 + 0.587i)6-s + 1.33·7-s + (−0.809 − 0.587i)8-s + (0.669 − 0.743i)10-s + (−0.309 + 0.951i)12-s + (0.309 − 0.951i)13-s + (0.413 + 1.27i)14-s + (−0.913 − 0.406i)15-s + (0.309 − 0.951i)16-s + (0.169 + 0.122i)17-s + (0.913 + 0.406i)20-s + (1.08 − 0.786i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 - 0.166i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 - 0.166i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.769783353\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.769783353\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.309 + 0.951i)T \) |
good | 3 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 - 1.33T + T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.169 - 0.122i)T + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.564 + 1.73i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - 1.33T + T^{2} \) |
| 47 | \( 1 + (-0.169 + 0.122i)T + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 71 | \( 1 + (1.47 - 1.07i)T + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.794654005765510197265018713533, −7.965812402314156859802200305920, −7.84514078429791429197004184712, −7.17527651105145007364994076130, −5.78392878068079831393948097871, −5.29824002310342934062048647594, −4.42325859647228440268252745254, −3.66412881170457221842255374332, −2.43419702547195889666490182996, −1.13281841170891587346248486963,
1.51330011689573335228657235293, 2.56498409482361125958096431462, 3.30667326977277782127220017602, 4.20595576689375830416824951184, 4.58648474974934061051980905485, 5.76594941231272729031560532152, 6.75145299354972870915829144772, 7.84393207410874481443298337243, 8.425037727565245227167278164438, 9.142420846205221024572407983303