L(s) = 1 | + (−0.587 − 0.809i)2-s + (−1.64 − 0.535i)3-s + (−0.309 + 0.951i)4-s + (0.866 + 0.5i)5-s + (0.535 + 1.64i)6-s − 0.209i·7-s + (0.951 − 0.309i)8-s + (1.61 + 1.17i)9-s + (−0.104 − 0.994i)10-s + (1.01 − 1.40i)12-s + (0.587 − 0.809i)13-s + (−0.169 + 0.122i)14-s + (−1.15 − 1.28i)15-s + (−0.809 − 0.587i)16-s + (−0.395 + 0.128i)17-s − 2i·18-s + ⋯ |
L(s) = 1 | + (−0.587 − 0.809i)2-s + (−1.64 − 0.535i)3-s + (−0.309 + 0.951i)4-s + (0.866 + 0.5i)5-s + (0.535 + 1.64i)6-s − 0.209i·7-s + (0.951 − 0.309i)8-s + (1.61 + 1.17i)9-s + (−0.104 − 0.994i)10-s + (1.01 − 1.40i)12-s + (0.587 − 0.809i)13-s + (−0.169 + 0.122i)14-s + (−1.15 − 1.28i)15-s + (−0.809 − 0.587i)16-s + (−0.395 + 0.128i)17-s − 2i·18-s + ⋯ |
Λ(s)=(=(2600s/2ΓC(s)L(s)(0.604+0.796i)Λ(1−s)
Λ(s)=(=(2600s/2ΓC(s)L(s)(0.604+0.796i)Λ(1−s)
Degree: |
2 |
Conductor: |
2600
= 23⋅52⋅13
|
Sign: |
0.604+0.796i
|
Analytic conductor: |
1.29756 |
Root analytic conductor: |
1.13910 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2600(2339,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2600, ( :0), 0.604+0.796i)
|
Particular Values
L(21) |
≈ |
0.5899233667 |
L(21) |
≈ |
0.5899233667 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.587+0.809i)T |
| 5 | 1+(−0.866−0.5i)T |
| 13 | 1+(−0.587+0.809i)T |
good | 3 | 1+(1.64+0.535i)T+(0.809+0.587i)T2 |
| 7 | 1+0.209iT−T2 |
| 11 | 1+(−0.309+0.951i)T2 |
| 17 | 1+(0.395−0.128i)T+(0.809−0.587i)T2 |
| 19 | 1+(0.809−0.587i)T2 |
| 23 | 1+(0.309−0.951i)T2 |
| 29 | 1+(0.809+0.587i)T2 |
| 31 | 1+(−0.363−1.11i)T+(−0.809+0.587i)T2 |
| 37 | 1+(0.786−1.08i)T+(−0.309−0.951i)T2 |
| 41 | 1+(−0.309−0.951i)T2 |
| 43 | 1+1.98iT−T2 |
| 47 | 1+(−1.86−0.604i)T+(0.809+0.587i)T2 |
| 53 | 1+(−0.809−0.587i)T2 |
| 59 | 1+(−0.309−0.951i)T2 |
| 61 | 1+(−0.309+0.951i)T2 |
| 67 | 1+(−0.809+0.587i)T2 |
| 71 | 1+(0.459−1.41i)T+(−0.809−0.587i)T2 |
| 73 | 1+(0.309−0.951i)T2 |
| 79 | 1+(0.809+0.587i)T2 |
| 83 | 1+(−0.809+0.587i)T2 |
| 89 | 1+(−0.309+0.951i)T2 |
| 97 | 1+(−0.809−0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.087313023737302336435908754639, −8.260743596475637356470218898360, −7.13719263448814576632651267136, −6.83207562071336284802967475731, −5.81471274110815642914104932464, −5.25116526825653856332947938063, −4.17120260955079264268229189460, −2.98508018619587250605455662099, −1.84499775877002126331198670647, −0.917423013970033506730666986793,
0.847167621508938679712724457558, 2.02333808161014639497224636305, 4.16139376749144469295452461705, 4.72617059193881026843747394623, 5.58764712387040363408677630406, 6.01761206640922975151697449504, 6.59094002949309393372536005201, 7.44473654058901677270923060415, 8.654488724066997508098084523111, 9.237991370388709674717629274632