L(s) = 1 | + 1.93·2-s + 1.74·4-s − 0.508·5-s + 3.68·7-s − 0.491·8-s − 0.983·10-s + 0.318·11-s + 4.18·13-s + 7.12·14-s − 4.44·16-s − 3.17·17-s − 5.87·19-s − 0.887·20-s + 0.616·22-s − 2.50·23-s − 4.74·25-s + 8.10·26-s + 6.42·28-s − 29-s + 2.50·31-s − 7.61·32-s − 6.14·34-s − 1.87·35-s + 7.87·37-s − 11.3·38-s + 0.249·40-s − 8.72·41-s + ⋯ |
L(s) = 1 | + 1.36·2-s + 0.872·4-s − 0.227·5-s + 1.39·7-s − 0.173·8-s − 0.311·10-s + 0.0960·11-s + 1.16·13-s + 1.90·14-s − 1.11·16-s − 0.769·17-s − 1.34·19-s − 0.198·20-s + 0.131·22-s − 0.522·23-s − 0.948·25-s + 1.59·26-s + 1.21·28-s − 0.185·29-s + 0.450·31-s − 1.34·32-s − 1.05·34-s − 0.316·35-s + 1.29·37-s − 1.84·38-s + 0.0395·40-s − 1.36·41-s + ⋯ |
Λ(s)=(=(261s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(261s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.466756777 |
L(21) |
≈ |
2.466756777 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 29 | 1+T |
good | 2 | 1−1.93T+2T2 |
| 5 | 1+0.508T+5T2 |
| 7 | 1−3.68T+7T2 |
| 11 | 1−0.318T+11T2 |
| 13 | 1−4.18T+13T2 |
| 17 | 1+3.17T+17T2 |
| 19 | 1+5.87T+19T2 |
| 23 | 1+2.50T+23T2 |
| 31 | 1−2.50T+31T2 |
| 37 | 1−7.87T+37T2 |
| 41 | 1+8.72T+41T2 |
| 43 | 1+10.7T+43T2 |
| 47 | 1−11.0T+47T2 |
| 53 | 1−8.24T+53T2 |
| 59 | 1−11.3T+59T2 |
| 61 | 1+3.87T+61T2 |
| 67 | 1−7.04T+67T2 |
| 71 | 1+6.24T+71T2 |
| 73 | 1+7.87T+73T2 |
| 79 | 1+4.85T+79T2 |
| 83 | 1−8.37T+83T2 |
| 89 | 1−15.9T+89T2 |
| 97 | 1−11.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.89379906390817673898495680908, −11.45717177468320183508910298287, −10.50317658005145421373983048345, −8.827804660270956228612202293003, −8.110151513408090971118370390688, −6.64955494139607739085014912079, −5.69070465123847630004924937603, −4.54613745325072059167389947720, −3.85551656049954225721533006205, −2.09940579716822489259011887500,
2.09940579716822489259011887500, 3.85551656049954225721533006205, 4.54613745325072059167389947720, 5.69070465123847630004924937603, 6.64955494139607739085014912079, 8.110151513408090971118370390688, 8.827804660270956228612202293003, 10.50317658005145421373983048345, 11.45717177468320183508910298287, 11.89379906390817673898495680908