L(s) = 1 | + (−1.05 + 2.42i)2-s + (1.16 − 1.27i)3-s + (−3.40 − 3.67i)4-s + (1.73 + 0.261i)5-s + (1.86 + 4.19i)6-s + (−1.57 − 1.45i)7-s + (7.51 − 2.63i)8-s + (−0.262 − 2.98i)9-s + (−2.46 + 3.93i)10-s + (1.73 − 1.49i)11-s + (−8.67 + 0.0558i)12-s + (1.70 − 2.50i)13-s + (5.19 − 2.26i)14-s + (2.36 − 1.90i)15-s + (−0.827 + 11.0i)16-s + (1.44 + 1.44i)17-s + ⋯ |
L(s) = 1 | + (−0.748 + 1.71i)2-s + (0.675 − 0.737i)3-s + (−1.70 − 1.83i)4-s + (0.775 + 0.116i)5-s + (0.759 + 1.71i)6-s + (−0.593 − 0.550i)7-s + (2.65 − 0.930i)8-s + (−0.0875 − 0.996i)9-s + (−0.780 + 1.24i)10-s + (0.524 − 0.451i)11-s + (−2.50 + 0.0161i)12-s + (0.473 − 0.694i)13-s + (1.38 − 0.606i)14-s + (0.609 − 0.492i)15-s + (−0.206 + 2.76i)16-s + (0.349 + 0.349i)17-s + ⋯ |
Λ(s)=(=(261s/2ΓC(s)L(s)(0.814−0.580i)Λ(2−s)
Λ(s)=(=(261s/2ΓC(s+1/2)L(s)(0.814−0.580i)Λ(1−s)
Degree: |
2 |
Conductor: |
261
= 32⋅29
|
Sign: |
0.814−0.580i
|
Analytic conductor: |
2.08409 |
Root analytic conductor: |
1.44363 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ261(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 261, ( :1/2), 0.814−0.580i)
|
Particular Values
L(1) |
≈ |
1.02212+0.327244i |
L(21) |
≈ |
1.02212+0.327244i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.16+1.27i)T |
| 29 | 1+(3.01+4.46i)T |
good | 2 | 1+(1.05−2.42i)T+(−1.36−1.46i)T2 |
| 5 | 1+(−1.73−0.261i)T+(4.77+1.47i)T2 |
| 7 | 1+(1.57+1.45i)T+(0.523+6.98i)T2 |
| 11 | 1+(−1.73+1.49i)T+(1.63−10.8i)T2 |
| 13 | 1+(−1.70+2.50i)T+(−4.74−12.1i)T2 |
| 17 | 1+(−1.44−1.44i)T+17iT2 |
| 19 | 1+(−6.42−4.03i)T+(8.24+17.1i)T2 |
| 23 | 1+(−1.03−0.407i)T+(16.8+15.6i)T2 |
| 31 | 1+(7.66−5.65i)T+(9.13−29.6i)T2 |
| 37 | 1+(1.67+4.79i)T+(−28.9+23.0i)T2 |
| 41 | 1+(−7.61−2.04i)T+(35.5+20.5i)T2 |
| 43 | 1+(1.03−1.40i)T+(−12.6−41.0i)T2 |
| 47 | 1+(−7.94−9.22i)T+(−7.00+46.4i)T2 |
| 53 | 1+(−3.67−2.93i)T+(11.7+51.6i)T2 |
| 59 | 1+(11.1−6.41i)T+(29.5−51.0i)T2 |
| 61 | 1+(12.0−0.450i)T+(60.8−4.55i)T2 |
| 67 | 1+(−6.41+0.480i)T+(66.2−9.98i)T2 |
| 71 | 1+(−7.16+3.45i)T+(44.2−55.5i)T2 |
| 73 | 1+(−0.980+8.69i)T+(−71.1−16.2i)T2 |
| 79 | 1+(−0.814+4.30i)T+(−73.5−28.8i)T2 |
| 83 | 1+(2.13−6.91i)T+(−68.5−46.7i)T2 |
| 89 | 1+(4.94−0.556i)T+(86.7−19.8i)T2 |
| 97 | 1+(−3.14−5.95i)T+(−54.6+80.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.49047951771865443726798004215, −10.62288771626407724761012812103, −9.566379372076265589713045944290, −9.105427018172791117311471152532, −7.86402106217132953363124554237, −7.35391679717108772647968815673, −6.15418482525324614559383934936, −5.73756936408797513297529610233, −3.61378193080013837695562065967, −1.17813068532803138718297012423,
1.80844517421388211343509165931, 2.94063178418357423828715183167, 3.96038707782298330084330210128, 5.34391044543609681030068485871, 7.38708437318772838424967559048, 8.813498137063979595778473634170, 9.475428117024326463289275612339, 9.601379568417423210336100087278, 10.85047922449469439051814361125, 11.62159239982223845875960962866