L(s) = 1 | + (−0.234 + 0.536i)2-s + (−1.27 + 1.17i)3-s + (1.12 + 1.21i)4-s + (−1.79 − 0.269i)5-s + (−0.334 − 0.957i)6-s + (2.59 + 2.40i)7-s + (−2.02 + 0.707i)8-s + (0.225 − 2.99i)9-s + (0.564 − 0.898i)10-s + (−0.974 + 0.838i)11-s + (−2.86 − 0.215i)12-s + (−2.06 + 3.02i)13-s + (−1.89 + 0.828i)14-s + (2.59 − 1.76i)15-s + (−0.154 + 2.05i)16-s + (−2.82 − 2.82i)17-s + ⋯ |
L(s) = 1 | + (−0.165 + 0.379i)2-s + (−0.733 + 0.679i)3-s + (0.563 + 0.607i)4-s + (−0.801 − 0.120i)5-s + (−0.136 − 0.390i)6-s + (0.980 + 0.909i)7-s + (−0.714 + 0.250i)8-s + (0.0752 − 0.997i)9-s + (0.178 − 0.283i)10-s + (−0.293 + 0.252i)11-s + (−0.826 − 0.0621i)12-s + (−0.571 + 0.838i)13-s + (−0.507 + 0.221i)14-s + (0.669 − 0.456i)15-s + (−0.0385 + 0.513i)16-s + (−0.684 − 0.684i)17-s + ⋯ |
Λ(s)=(=(261s/2ΓC(s)L(s)(−0.929−0.368i)Λ(2−s)
Λ(s)=(=(261s/2ΓC(s+1/2)L(s)(−0.929−0.368i)Λ(1−s)
Degree: |
2 |
Conductor: |
261
= 32⋅29
|
Sign: |
−0.929−0.368i
|
Analytic conductor: |
2.08409 |
Root analytic conductor: |
1.44363 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ261(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 261, ( :1/2), −0.929−0.368i)
|
Particular Values
L(1) |
≈ |
0.147081+0.771116i |
L(21) |
≈ |
0.147081+0.771116i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.27−1.17i)T |
| 29 | 1+(1.28−5.23i)T |
good | 2 | 1+(0.234−0.536i)T+(−1.36−1.46i)T2 |
| 5 | 1+(1.79+0.269i)T+(4.77+1.47i)T2 |
| 7 | 1+(−2.59−2.40i)T+(0.523+6.98i)T2 |
| 11 | 1+(0.974−0.838i)T+(1.63−10.8i)T2 |
| 13 | 1+(2.06−3.02i)T+(−4.74−12.1i)T2 |
| 17 | 1+(2.82+2.82i)T+17iT2 |
| 19 | 1+(5.81+3.65i)T+(8.24+17.1i)T2 |
| 23 | 1+(−8.33−3.27i)T+(16.8+15.6i)T2 |
| 31 | 1+(−3.72+2.74i)T+(9.13−29.6i)T2 |
| 37 | 1+(−2.62−7.49i)T+(−28.9+23.0i)T2 |
| 41 | 1+(−6.95−1.86i)T+(35.5+20.5i)T2 |
| 43 | 1+(−1.32+1.79i)T+(−12.6−41.0i)T2 |
| 47 | 1+(−1.08−1.26i)T+(−7.00+46.4i)T2 |
| 53 | 1+(−6.55−5.22i)T+(11.7+51.6i)T2 |
| 59 | 1+(7.47−4.31i)T+(29.5−51.0i)T2 |
| 61 | 1+(−13.5+0.506i)T+(60.8−4.55i)T2 |
| 67 | 1+(−10.9+0.819i)T+(66.2−9.98i)T2 |
| 71 | 1+(3.89−1.87i)T+(44.2−55.5i)T2 |
| 73 | 1+(−0.963+8.55i)T+(−71.1−16.2i)T2 |
| 79 | 1+(−0.335+1.77i)T+(−73.5−28.8i)T2 |
| 83 | 1+(0.302−0.980i)T+(−68.5−46.7i)T2 |
| 89 | 1+(2.15−0.242i)T+(86.7−19.8i)T2 |
| 97 | 1+(0.817+1.54i)T+(−54.6+80.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.99765212591360249588545360064, −11.46946064434968153256332837814, −10.94072792563807607621451041919, −9.251632813132901303823704813069, −8.609721260005858404931029280654, −7.41872313239674267594784390235, −6.54260482425345292420371964112, −5.12863478772002369810442191930, −4.31127203550797160037291547683, −2.58891434033142035697080879119,
0.69096279217020225538143137256, 2.27307466641504418426603724157, 4.25040619474159515914671422724, 5.49730019719160103496423602931, 6.65512302626549142370160792103, 7.56351146080921854858517302192, 8.357519393612497433064573199023, 10.20559349525106568395890140543, 10.97127094190882966852468836910, 11.18441922195657589821509005759