L(s) = 1 | + (−0.694 + 1.59i)2-s + (0.725 − 1.57i)3-s + (−0.690 − 0.744i)4-s + (−3.95 − 0.595i)5-s + (1.99 + 2.24i)6-s + (−0.402 − 0.373i)7-s + (−1.61 + 0.564i)8-s + (−1.94 − 2.28i)9-s + (3.69 − 5.87i)10-s + (2.35 − 2.02i)11-s + (−1.67 + 0.546i)12-s + (0.226 − 0.332i)13-s + (0.873 − 0.381i)14-s + (−3.80 + 5.78i)15-s + (0.373 − 4.98i)16-s + (−2.69 − 2.69i)17-s + ⋯ |
L(s) = 1 | + (−0.491 + 1.12i)2-s + (0.418 − 0.908i)3-s + (−0.345 − 0.372i)4-s + (−1.76 − 0.266i)5-s + (0.816 + 0.917i)6-s + (−0.152 − 0.141i)7-s + (−0.570 + 0.199i)8-s + (−0.648 − 0.760i)9-s + (1.16 − 1.85i)10-s + (0.709 − 0.610i)11-s + (−0.482 + 0.157i)12-s + (0.0628 − 0.0921i)13-s + (0.233 − 0.101i)14-s + (−0.982 + 1.49i)15-s + (0.0934 − 1.24i)16-s + (−0.653 − 0.653i)17-s + ⋯ |
Λ(s)=(=(261s/2ΓC(s)L(s)(−0.0856+0.996i)Λ(2−s)
Λ(s)=(=(261s/2ΓC(s+1/2)L(s)(−0.0856+0.996i)Λ(1−s)
Degree: |
2 |
Conductor: |
261
= 32⋅29
|
Sign: |
−0.0856+0.996i
|
Analytic conductor: |
2.08409 |
Root analytic conductor: |
1.44363 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ261(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 261, ( :1/2), −0.0856+0.996i)
|
Particular Values
L(1) |
≈ |
0.266426−0.290325i |
L(21) |
≈ |
0.266426−0.290325i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.725+1.57i)T |
| 29 | 1+(−4.01−3.59i)T |
good | 2 | 1+(0.694−1.59i)T+(−1.36−1.46i)T2 |
| 5 | 1+(3.95+0.595i)T+(4.77+1.47i)T2 |
| 7 | 1+(0.402+0.373i)T+(0.523+6.98i)T2 |
| 11 | 1+(−2.35+2.02i)T+(1.63−10.8i)T2 |
| 13 | 1+(−0.226+0.332i)T+(−4.74−12.1i)T2 |
| 17 | 1+(2.69+2.69i)T+17iT2 |
| 19 | 1+(5.36+3.37i)T+(8.24+17.1i)T2 |
| 23 | 1+(6.37+2.50i)T+(16.8+15.6i)T2 |
| 31 | 1+(1.39−1.03i)T+(9.13−29.6i)T2 |
| 37 | 1+(−2.74−7.85i)T+(−28.9+23.0i)T2 |
| 41 | 1+(−3.40−0.912i)T+(35.5+20.5i)T2 |
| 43 | 1+(−0.908+1.23i)T+(−12.6−41.0i)T2 |
| 47 | 1+(−6.35−7.38i)T+(−7.00+46.4i)T2 |
| 53 | 1+(2.20+1.75i)T+(11.7+51.6i)T2 |
| 59 | 1+(1.88−1.09i)T+(29.5−51.0i)T2 |
| 61 | 1+(7.36−0.275i)T+(60.8−4.55i)T2 |
| 67 | 1+(8.04−0.603i)T+(66.2−9.98i)T2 |
| 71 | 1+(−12.9+6.25i)T+(44.2−55.5i)T2 |
| 73 | 1+(0.0593−0.527i)T+(−71.1−16.2i)T2 |
| 79 | 1+(−2.22+11.7i)T+(−73.5−28.8i)T2 |
| 83 | 1+(−2.07+6.72i)T+(−68.5−46.7i)T2 |
| 89 | 1+(−0.918+0.103i)T+(86.7−19.8i)T2 |
| 97 | 1+(4.29+8.13i)T+(−54.6+80.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.89535094820344637810833758178, −11.05235503601554990217334170070, −9.077412565334194784973465050425, −8.489216079680957556297958273096, −7.84328044663720006243926280148, −6.93548502962296026989136765372, −6.28434252899668927282753776297, −4.40453838626543848148828003975, −3.04620852526210515967118712387, −0.32870273584036611682737621257,
2.34391133563524547818684990345, 3.92978975131710892315575275533, 4.05522442140341280965279754883, 6.26029721136741163321817982085, 7.79563812957666366630074264893, 8.610077979757417550996397485964, 9.512152935482890612103541205632, 10.54760725461709287792708703012, 11.09262931089279076032473843572, 11.99246168002504904759070857389